sklearn.preprocessing.add_dummy_feature
-
sklearn.preprocessing.add_dummy_feature(X, value=1.0)
[source] -
Augment dataset with an additional dummy feature.
This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly.
- Parameters
-
-
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Data.
-
valuefloat
-
Value to use for the dummy feature.
-
- Returns
-
-
X{ndarray, sparse matrix} of shape (n_samples, n_features + 1)
-
Same data with dummy feature added as first column.
-
Examples
>>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[1., 0., 1.], [1., 1., 0.]])
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.preprocessing.add_dummy_feature.html