sklearn.datasets.make_swiss_roll
-
sklearn.datasets.make_swiss_roll(n_samples=100, *, noise=0.0, random_state=None)
[source] -
Generate a swiss roll dataset.
Read more in the User Guide.
- Parameters
-
-
n_samplesint, default=100
-
The number of sample points on the S curve.
-
noisefloat, default=0.0
-
The standard deviation of the gaussian noise.
-
random_stateint, RandomState instance or None, default=None
-
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
-
- Returns
-
-
Xndarray of shape (n_samples, 3)
-
The points.
-
tndarray of shape (n_samples,)
-
The univariate position of the sample according to the main dimension of the points in the manifold.
-
Notes
The algorithm is from Marsland [1].
References
-
1
-
S. Marsland, “Machine Learning: An Algorithmic Perspective”, Chapter 10, 2009. http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py
Examples using sklearn.datasets.make_swiss_roll
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.datasets.make_swiss_roll.html