sklearn.metrics.pairwise.cosine_similarity
-
sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True)
[source] -
Compute cosine similarity between samples in X and Y.
Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y:
K(X, Y) = <X, Y> / (||X||*||Y||)
On L2-normalized data, this function is equivalent to linear_kernel.
Read more in the User Guide.
- Parameters
-
-
X{ndarray, sparse matrix} of shape (n_samples_X, n_features)
-
Input data.
-
Y{ndarray, sparse matrix} of shape (n_samples_Y, n_features), default=None
-
Input data. If
None
, the output will be the pairwise similarities between all samples inX
. -
dense_outputbool, default=True
-
Whether to return dense output even when the input is sparse. If
False
, the output is sparse if both input arrays are sparse.New in version 0.17: parameter
dense_output
for dense output.
-
- Returns
-
-
kernel matrixndarray of shape (n_samples_X, n_samples_Y)
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html