sklearn.linear_model.GammaRegressor
-
class sklearn.linear_model.GammaRegressor(*, alpha=1.0, fit_intercept=True, max_iter=100, tol=0.0001, warm_start=False, verbose=0)
[source] -
Generalized Linear Model with a Gamma distribution.
Read more in the User Guide.
New in version 0.23.
- Parameters
-
-
alphafloat, default=1
-
Constant that multiplies the penalty term and thus determines the regularization strength.
alpha = 0
is equivalent to unpenalized GLMs. In this case, the design matrixX
must have full column rank (no collinearities). -
fit_interceptbool, default=True
-
Specifies if a constant (a.k.a. bias or intercept) should be added to the linear predictor (X @ coef + intercept).
-
max_iterint, default=100
-
The maximal number of iterations for the solver.
-
tolfloat, default=1e-4
-
Stopping criterion. For the lbfgs solver, the iteration will stop when
max{|g_j|, j = 1, ..., d} <= tol
whereg_j
is the j-th component of the gradient (derivative) of the objective function. -
warm_startbool, default=False
-
If set to
True
, reuse the solution of the previous call tofit
as initialization forcoef_
andintercept_
. -
verboseint, default=0
-
For the lbfgs solver set verbose to any positive number for verbosity.
-
- Attributes
-
-
coef_array of shape (n_features,)
-
Estimated coefficients for the linear predictor (
X * coef_ + intercept_
) in the GLM. -
intercept_float
-
Intercept (a.k.a. bias) added to linear predictor.
-
n_iter_int
-
Actual number of iterations used in the solver.
-
Examples
>>> from sklearn import linear_model >>> clf = linear_model.GammaRegressor() >>> X = [[1, 2], [2, 3], [3, 4], [4, 3]] >>> y = [19, 26, 33, 30] >>> clf.fit(X, y) GammaRegressor() >>> clf.score(X, y) 0.773... >>> clf.coef_ array([0.072..., 0.066...]) >>> clf.intercept_ 2.896... >>> clf.predict([[1, 0], [2, 8]]) array([19.483..., 35.795...])
Methods
fit
(X, y[, sample_weight])Fit a Generalized Linear Model.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict using GLM with feature matrix X.
score
(X, y[, sample_weight])Compute D^2, the percentage of deviance explained.
set_params
(**params)Set the parameters of this estimator.
-
fit(X, y, sample_weight=None)
[source] -
Fit a Generalized Linear Model.
- Parameters
-
-
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Training data.
-
yarray-like of shape (n_samples,)
-
Target values.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
- Returns
-
-
selfreturns an instance of self.
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
predict(X)
[source] -
Predict using GLM with feature matrix X.
- Parameters
-
-
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Samples.
-
- Returns
-
-
y_predarray of shape (n_samples,)
-
Returns predicted values.
-
-
score(X, y, sample_weight=None)
[source] -
Compute D^2, the percentage of deviance explained.
D^2 is a generalization of the coefficient of determination R^2. R^2 uses squared error and D^2 deviance. Note that those two are equal for
family='normal'
.D^2 is defined as \(D^2 = 1-\frac{D(y_{true},y_{pred})}{D_{null}}\), \(D_{null}\) is the null deviance, i.e. the deviance of a model with intercept alone, which corresponds to \(y_{pred} = \bar{y}\). The mean \(\bar{y}\) is averaged by sample_weight. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
- Parameters
-
-
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Test samples.
-
yarray-like of shape (n_samples,)
-
True values of target.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
- Returns
-
-
scorefloat
-
D^2 of self.predict(X) w.r.t. y.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
Examples using sklearn.linear_model.GammaRegressor
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.linear_model.GammaRegressor.html