sklearn.metrics.plot_precision_recall_curve
-
sklearn.metrics.plot_precision_recall_curve(estimator, X, y, *, sample_weight=None, response_method='auto', name=None, ax=None, pos_label=None, **kwargs)
[source] -
Plot Precision Recall Curve for binary classifiers.
Extra keyword arguments will be passed to matplotlib’s
plot
.Read more in the User Guide.
- Parameters
-
-
estimatorestimator instance
-
Fitted classifier or a fitted
Pipeline
in which the last estimator is a classifier. -
X{array-like, sparse matrix} of shape (n_samples, n_features)
-
Input values.
-
yarray-like of shape (n_samples,)
-
Binary target values.
-
sample_weightarray-like of shape (n_samples,), default=None
-
Sample weights.
-
response_method{‘predict_proba’, ‘decision_function’, ‘auto’}, default=’auto’
-
Specifies whether to use predict_proba or decision_function as the target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next.
-
namestr, default=None
-
Name for labeling curve. If
None
, the name of the estimator is used. -
axmatplotlib axes, default=None
-
Axes object to plot on. If
None
, a new figure and axes is created. -
pos_labelstr or int, default=None
-
The class considered as the positive class when computing the precision and recall metrics. By default,
estimators.classes_[1]
is considered as the positive class.New in version 0.24.
-
**kwargsdict
-
Keyword arguments to be passed to matplotlib’s
plot
.
-
- Returns
-
-
displayPrecisionRecallDisplay
-
Object that stores computed values.
-
See also
-
precision_recall_curve
-
Compute precision-recall pairs for different probability thresholds.
-
PrecisionRecallDisplay
-
Precision Recall visualization.
Examples using sklearn.metrics.plot_precision_recall_curve
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.plot_precision_recall_curve.html