Ledoit-Wolf vs OAS estimation
The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate.
Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian.
This example, inspired from Chen’s publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data.
[1] “Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy.linalg import toeplitz, cholesky from sklearn.covariance import LedoitWolf, OAS np.random.seed(0)
n_features = 100 # simulation covariance matrix (AR(1) process) r = 0.1 real_cov = toeplitz(r ** np.arange(n_features)) coloring_matrix = cholesky(real_cov) n_samples_range = np.arange(6, 31, 1) repeat = 100 lw_mse = np.zeros((n_samples_range.size, repeat)) oa_mse = np.zeros((n_samples_range.size, repeat)) lw_shrinkage = np.zeros((n_samples_range.size, repeat)) oa_shrinkage = np.zeros((n_samples_range.size, repeat)) for i, n_samples in enumerate(n_samples_range): for j in range(repeat): X = np.dot( np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X) lw_mse[i, j] = lw.error_norm(real_cov, scaling=False) lw_shrinkage[i, j] = lw.shrinkage_ oa = OAS(store_precision=False, assume_centered=True) oa.fit(X) oa_mse[i, j] = oa.error_norm(real_cov, scaling=False) oa_shrinkage[i, j] = oa.shrinkage_ # plot MSE plt.subplot(2, 1, 1) plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1), label='Ledoit-Wolf', color='navy', lw=2) plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1), label='OAS', color='darkorange', lw=2) plt.ylabel("Squared error") plt.legend(loc="upper right") plt.title("Comparison of covariance estimators") plt.xlim(5, 31) # plot shrinkage coefficient plt.subplot(2, 1, 2) plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1), label='Ledoit-Wolf', color='navy', lw=2) plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1), label='OAS', color='darkorange', lw=2) plt.xlabel("n_samples") plt.ylabel("Shrinkage") plt.legend(loc="lower right") plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.) plt.xlim(5, 31) plt.show()
Total running time of the script: ( 0 minutes 2.598 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/covariance/plot_lw_vs_oas.html