sklearn.covariance.GraphicalLasso
-
class sklearn.covariance.GraphicalLasso(alpha=0.01, *, mode='cd', tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False, assume_centered=False)
[source] -
Sparse inverse covariance estimation with an l1-penalized estimator.
Read more in the User Guide.
Changed in version v0.20: GraphLasso has been renamed to GraphicalLasso
- Parameters
-
-
alphafloat, default=0.01
-
The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. Range is (0, inf].
-
mode{‘cd’, ‘lars’}, default=’cd’
-
The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.
-
tolfloat, default=1e-4
-
The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. Range is (0, inf].
-
enet_tolfloat, default=1e-4
-
The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode=’cd’. Range is (0, inf].
-
max_iterint, default=100
-
The maximum number of iterations.
-
verbosebool, default=False
-
If verbose is True, the objective function and dual gap are plotted at each iteration.
-
assume_centeredbool, default=False
-
If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation.
-
- Attributes
-
-
location_ndarray of shape (n_features,)
-
Estimated location, i.e. the estimated mean.
-
covariance_ndarray of shape (n_features, n_features)
-
Estimated covariance matrix
-
precision_ndarray of shape (n_features, n_features)
-
Estimated pseudo inverse matrix.
-
n_iter_int
-
Number of iterations run.
-
See also
-
graphical_lasso,
GraphicalLassoCV
Examples
>>> import numpy as np >>> from sklearn.covariance import GraphicalLasso >>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.2, 0.0, 0.3, 0.1], ... [0.0, 0.0, 0.1, 0.7]]) >>> np.random.seed(0) >>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0], ... cov=true_cov, ... size=200) >>> cov = GraphicalLasso().fit(X) >>> np.around(cov.covariance_, decimals=3) array([[0.816, 0.049, 0.218, 0.019], [0.049, 0.364, 0.017, 0.034], [0.218, 0.017, 0.322, 0.093], [0.019, 0.034, 0.093, 0.69 ]]) >>> np.around(cov.location_, decimals=3) array([0.073, 0.04 , 0.038, 0.143])
Methods
error_norm
(comp_cov[, norm, scaling, squared])Computes the Mean Squared Error between two covariance estimators.
fit
(X[, y])Fits the GraphicalLasso model to X.
get_params
([deep])Get parameters for this estimator.
Getter for the precision matrix.
mahalanobis
(X)Computes the squared Mahalanobis distances of given observations.
score
(X_test[, y])Computes the log-likelihood of a Gaussian data set with
self.covariance_
as an estimator of its covariance matrix.set_params
(**params)Set the parameters of this estimator.
-
error_norm(comp_cov, norm='frobenius', scaling=True, squared=True)
[source] -
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm).
- Parameters
-
-
comp_covarray-like of shape (n_features, n_features)
-
The covariance to compare with.
-
norm{“frobenius”, “spectral”}, default=”frobenius”
-
The type of norm used to compute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error
(comp_cov - self.covariance_)
. -
scalingbool, default=True
-
If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled.
-
squaredbool, default=True
-
Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned.
-
- Returns
-
-
resultfloat
-
The Mean Squared Error (in the sense of the Frobenius norm) between
self
andcomp_cov
covariance estimators.
-
-
fit(X, y=None)
[source] -
Fits the GraphicalLasso model to X.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
Data from which to compute the covariance estimate
-
yIgnored
-
Not used, present for API consistency by convention.
-
- Returns
-
-
selfobject
-
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict
-
Parameter names mapped to their values.
-
-
get_precision()
[source] -
Getter for the precision matrix.
- Returns
-
-
precision_array-like of shape (n_features, n_features)
-
The precision matrix associated to the current covariance object.
-
-
mahalanobis(X)
[source] -
Computes the squared Mahalanobis distances of given observations.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features)
-
The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit.
-
- Returns
-
-
distndarray of shape (n_samples,)
-
Squared Mahalanobis distances of the observations.
-
-
score(X_test, y=None)
[source] -
Computes the log-likelihood of a Gaussian data set with
self.covariance_
as an estimator of its covariance matrix.- Parameters
-
-
X_testarray-like of shape (n_samples, n_features)
-
Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering).
-
yIgnored
-
Not used, present for API consistency by convention.
-
- Returns
-
-
resfloat
-
The likelihood of the data set with
self.covariance_
as an estimator of its covariance matrix.
-
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict
-
Estimator parameters.
-
- Returns
-
-
selfestimator instance
-
Estimator instance.
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.covariance.GraphicalLasso.html