Compact estimator representations
This example illustrates the use of the print_changed_only global parameter.
Setting print_changed_only to True will alternate the representation of estimators to only show the parameters that have been set to non-default values. This can be used to have more compact representations.
Out:
Default representation: LogisticRegression(penalty='l1') With changed_only option: LogisticRegression(penalty='l1')
print(__doc__) from sklearn.linear_model import LogisticRegression from sklearn import set_config lr = LogisticRegression(penalty='l1') print('Default representation:') print(lr) # LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, # intercept_scaling=1, l1_ratio=None, max_iter=100, # multi_class='auto', n_jobs=None, penalty='l1', # random_state=None, solver='warn', tol=0.0001, verbose=0, # warm_start=False) set_config(print_changed_only=True) print('\nWith changed_only option:') print(lr) # LogisticRegression(penalty='l1')
Total running time of the script: ( 0 minutes 0.003 seconds)
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/auto_examples/miscellaneous/plot_changed_only_pprint_parameter.html