sklearn.feature_selection.SelectFwe
-
class sklearn.feature_selection.SelectFwe(score_func=<function f_classif>, *, alpha=0.05)[source] -
Filter: Select the p-values corresponding to Family-wise error rate
Read more in the User Guide.
- Parameters
-
-
score_funccallable, default=f_classif -
Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues). Default is f_classif (see below “See Also”). The default function only works with classification tasks.
-
alphafloat, default=5e-2 -
The highest uncorrected p-value for features to keep.
-
- Attributes
-
-
scores_array-like of shape (n_features,) -
Scores of features.
-
pvalues_array-like of shape (n_features,) -
p-values of feature scores.
-
See also
-
f_classif -
ANOVA F-value between label/feature for classification tasks.
-
chi2 -
Chi-squared stats of non-negative features for classification tasks.
-
f_regression -
F-value between label/feature for regression tasks.
-
SelectPercentile -
Select features based on percentile of the highest scores.
-
SelectKBest -
Select features based on the k highest scores.
-
SelectFpr -
Select features based on a false positive rate test.
-
SelectFdr -
Select features based on an estimated false discovery rate.
-
GenericUnivariateSelect -
Univariate feature selector with configurable mode.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.feature_selection import SelectFwe, chi2 >>> X, y = load_breast_cancer(return_X_y=True) >>> X.shape (569, 30) >>> X_new = SelectFwe(chi2, alpha=0.01).fit_transform(X, y) >>> X_new.shape (569, 15)
Methods
fit(X, y)Run score function on (X, y) and get the appropriate features.
fit_transform(X[, y])Fit to data, then transform it.
get_params([deep])Get parameters for this estimator.
get_support([indices])Get a mask, or integer index, of the features selected
Reverse the transformation operation
set_params(**params)Set the parameters of this estimator.
transform(X)Reduce X to the selected features.
-
fit(X, y)[source] -
Run score function on (X, y) and get the appropriate features.
- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
The training input samples.
-
yarray-like of shape (n_samples,) -
The target values (class labels in classification, real numbers in regression).
-
- Returns
-
-
selfobject
-
-
fit_transform(X, y=None, **fit_params)[source] -
Fit to data, then transform it.
Fits transformer to
Xandywith optional parametersfit_paramsand returns a transformed version ofX.- Parameters
-
-
Xarray-like of shape (n_samples, n_features) -
Input samples.
-
yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None -
Target values (None for unsupervised transformations).
-
**fit_paramsdict -
Additional fit parameters.
-
- Returns
-
-
X_newndarray array of shape (n_samples, n_features_new) -
Transformed array.
-
-
get_params(deep=True)[source] -
Get parameters for this estimator.
- Parameters
-
-
deepbool, default=True -
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict -
Parameter names mapped to their values.
-
-
get_support(indices=False)[source] -
Get a mask, or integer index, of the features selected
- Parameters
-
-
indicesbool, default=False -
If True, the return value will be an array of integers, rather than a boolean mask.
-
- Returns
-
-
supportarray -
An index that selects the retained features from a feature vector. If
indicesis False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. Ifindicesis True, this is an integer array of shape [# output features] whose values are indices into the input feature vector.
-
-
inverse_transform(X)[source] -
Reverse the transformation operation
- Parameters
-
-
Xarray of shape [n_samples, n_selected_features] -
The input samples.
-
- Returns
-
-
X_rarray of shape [n_samples, n_original_features] -
Xwith columns of zeros inserted where features would have been removed bytransform.
-
-
set_params(**params)[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
-
-
**paramsdict -
Estimator parameters.
-
- Returns
-
-
selfestimator instance -
Estimator instance.
-
-
transform(X)[source] -
Reduce X to the selected features.
- Parameters
-
-
Xarray of shape [n_samples, n_features] -
The input samples.
-
- Returns
-
-
X_rarray of shape [n_samples, n_selected_features] -
The input samples with only the selected features.
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.feature_selection.SelectFwe.html