sklearn.tree.export_text
- 
sklearn.tree.export_text(decision_tree, *, feature_names=None, max_depth=10, spacing=3, decimals=2, show_weights=False)[source]
- 
Build a text report showing the rules of a decision tree. Note that backwards compatibility may not be supported. - Parameters
- 
- 
decision_treeobject
- 
The decision tree estimator to be exported. It can be an instance of DecisionTreeClassifier or DecisionTreeRegressor. 
- 
feature_nameslist of str, default=None
- 
A list of length n_features containing the feature names. If None generic names will be used (“feature_0”, “feature_1”, …). 
- 
max_depthint, default=10
- 
Only the first max_depth levels of the tree are exported. Truncated branches will be marked with “…”. 
- 
spacingint, default=3
- 
Number of spaces between edges. The higher it is, the wider the result. 
- 
decimalsint, default=2
- 
Number of decimal digits to display. 
- 
show_weightsbool, default=False
- 
If true the classification weights will be exported on each leaf. The classification weights are the number of samples each class. 
 
- 
- Returns
- 
- 
reportstring
- 
Text summary of all the rules in the decision tree. 
 
- 
 Examples>>> from sklearn.datasets import load_iris >>> from sklearn.tree import DecisionTreeClassifier >>> from sklearn.tree import export_text >>> iris = load_iris() >>> X = iris['data'] >>> y = iris['target'] >>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2) >>> decision_tree = decision_tree.fit(X, y) >>> r = export_text(decision_tree, feature_names=iris['feature_names']) >>> print(r) |--- petal width (cm) <= 0.80 | |--- class: 0 |--- petal width (cm) > 0.80 | |--- petal width (cm) <= 1.75 | | |--- class: 1 | |--- petal width (cm) > 1.75 | | |--- class: 2 
    © 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
    https://scikit-learn.org/0.24/modules/generated/sklearn.tree.export_text.html