sklearn.gaussian_process.kernels.PairwiseKernel
-
class sklearn.gaussian_process.kernels.PairwiseKernel(gamma=1.0, gamma_bounds=1e-05, 100000.0, metric='linear', pairwise_kernels_kwargs=None)[source] -
Wrapper for kernels in sklearn.metrics.pairwise.
A thin wrapper around the functionality of the kernels in sklearn.metrics.pairwise.
- Note: Evaluation of eval_gradient is not analytic but numeric and all
-
kernels support only isotropic distances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other kernel parameters are set directly at initialization and are kept fixed.
New in version 0.18.
- Parameters
-
-
gammafloat, default=1.0 -
Parameter gamma of the pairwise kernel specified by metric. It should be positive.
-
gamma_boundspair of floats >= 0 or “fixed”, default=(1e-5, 1e5) -
The lower and upper bound on ‘gamma’. If set to “fixed”, ‘gamma’ cannot be changed during hyperparameter tuning.
-
metric{“linear”, “additive_chi2”, “chi2”, “poly”, “polynomial”, “rbf”, “laplacian”, “sigmoid”, “cosine”} or callable, default=”linear” -
The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is “precomputed”, X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them.
-
pairwise_kernels_kwargsdict, default=None -
All entries of this dict (if any) are passed as keyword arguments to the pairwise kernel function.
-
- Attributes
-
-
bounds -
Returns the log-transformed bounds on the theta.
- hyperparameter_gamma
-
hyperparameters -
Returns a list of all hyperparameter specifications.
-
n_dims -
Returns the number of non-fixed hyperparameters of the kernel.
-
requires_vector_input -
Returns whether the kernel is defined on fixed-length feature vectors or generic objects.
-
theta -
Returns the (flattened, log-transformed) non-fixed hyperparameters.
-
Examples
>>> from sklearn.datasets import load_iris >>> from sklearn.gaussian_process import GaussianProcessClassifier >>> from sklearn.gaussian_process.kernels import PairwiseKernel >>> X, y = load_iris(return_X_y=True) >>> kernel = PairwiseKernel(metric='rbf') >>> gpc = GaussianProcessClassifier(kernel=kernel, ... random_state=0).fit(X, y) >>> gpc.score(X, y) 0.9733... >>> gpc.predict_proba(X[:2,:]) array([[0.8880..., 0.05663..., 0.05532...], [0.8676..., 0.07073..., 0.06165...]])Methods
__call__(X[, Y, eval_gradient])Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta)Returns a clone of self with given hyperparameters theta.
diag(X)Returns the diagonal of the kernel k(X, X).
get_params([deep])Get parameters of this kernel.
Returns whether the kernel is stationary.
set_params(**params)Set the parameters of this kernel.
-
__call__(X, Y=None, eval_gradient=False)[source] -
Return the kernel k(X, Y) and optionally its gradient.
- Parameters
-
-
Xndarray of shape (n_samples_X, n_features) -
Left argument of the returned kernel k(X, Y)
-
Yndarray of shape (n_samples_Y, n_features), default=None -
Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead.
-
eval_gradientbool, default=False -
Determines whether the gradient with respect to the log of the kernel hyperparameter is computed. Only supported when Y is None.
-
- Returns
-
-
Kndarray of shape (n_samples_X, n_samples_Y) -
Kernel k(X, Y)
-
K_gradientndarray of shape (n_samples_X, n_samples_X, n_dims), optional -
The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when
eval_gradientis True.
-
-
property bounds -
Returns the log-transformed bounds on the theta.
- Returns
-
-
boundsndarray of shape (n_dims, 2) -
The log-transformed bounds on the kernel’s hyperparameters theta
-
-
clone_with_theta(theta)[source] -
Returns a clone of self with given hyperparameters theta.
- Parameters
-
-
thetandarray of shape (n_dims,) -
The hyperparameters
-
-
diag(X)[source] -
Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
- Parameters
-
-
Xndarray of shape (n_samples_X, n_features) -
Left argument of the returned kernel k(X, Y)
-
- Returns
-
-
K_diagndarray of shape (n_samples_X,) -
Diagonal of kernel k(X, X)
-
-
get_params(deep=True)[source] -
Get parameters of this kernel.
- Parameters
-
-
deepbool, default=True -
If True, will return the parameters for this estimator and contained subobjects that are estimators.
-
- Returns
-
-
paramsdict -
Parameter names mapped to their values.
-
-
property hyperparameters -
Returns a list of all hyperparameter specifications.
-
is_stationary()[source] -
Returns whether the kernel is stationary.
-
property n_dims -
Returns the number of non-fixed hyperparameters of the kernel.
-
property requires_vector_input -
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True for backward compatibility.
-
set_params(**params)[source] -
Set the parameters of this kernel.
The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object.- Returns
-
- self
-
property theta -
Returns the (flattened, log-transformed) non-fixed hyperparameters.
Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale.
- Returns
-
-
thetandarray of shape (n_dims,) -
The non-fixed, log-transformed hyperparameters of the kernel
-
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.gaussian_process.kernels.PairwiseKernel.html