sklearn.metrics.ConfusionMatrixDisplay
-
class sklearn.metrics.ConfusionMatrixDisplay(confusion_matrix, *, display_labels=None)[source] -
Confusion Matrix visualization.
It is recommend to use
plot_confusion_matrixto create aConfusionMatrixDisplay. All parameters are stored as attributes.Read more in the User Guide.
- Parameters
-
-
confusion_matrixndarray of shape (n_classes, n_classes) -
Confusion matrix.
-
display_labelsndarray of shape (n_classes,), default=None -
Display labels for plot. If None, display labels are set from 0 to
n_classes - 1.
-
- Attributes
-
-
im_matplotlib AxesImage -
Image representing the confusion matrix.
-
text_ndarray of shape (n_classes, n_classes), dtype=matplotlib Text, or None -
Array of matplotlib axes.
Noneifinclude_valuesis false. -
ax_matplotlib Axes -
Axes with confusion matrix.
-
figure_matplotlib Figure -
Figure containing the confusion matrix.
-
See also
-
confusion_matrix -
Compute Confusion Matrix to evaluate the accuracy of a classification.
-
plot_confusion_matrix -
Plot Confusion Matrix.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import SVC >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... random_state=0) >>> clf = SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> predictions = clf.predict(X_test) >>> cm = confusion_matrix(y_test, predictions, labels=clf.classes_) >>> disp = ConfusionMatrixDisplay(confusion_matrix=cm, ... display_labels=clf.classes_) >>> disp.plot()
Methods
plot(*[, include_values, cmap, …])Plot visualization.
-
plot(*, include_values=True, cmap='viridis', xticks_rotation='horizontal', values_format=None, ax=None, colorbar=True)[source] -
Plot visualization.
- Parameters
-
-
include_valuesbool, default=True -
Includes values in confusion matrix.
-
cmapstr or matplotlib Colormap, default=’viridis’ -
Colormap recognized by matplotlib.
-
xticks_rotation{‘vertical’, ‘horizontal’} or float, default=’horizontal’ -
Rotation of xtick labels.
-
values_formatstr, default=None -
Format specification for values in confusion matrix. If
None, the format specification is ‘d’ or ‘.2g’ whichever is shorter. -
axmatplotlib axes, default=None -
Axes object to plot on. If
None, a new figure and axes is created. -
colorbarbool, default=True -
Whether or not to add a colorbar to the plot.
-
- Returns
-
-
displayConfusionMatrixDisplay
-
Examples using sklearn.metrics.ConfusionMatrixDisplay
© 2007–2020 The scikit-learn developers
Licensed under the 3-clause BSD License.
https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html