tf.tpu.experimental.StochasticGradientDescentParameters

Optimization parameters for stochastic gradient descent for TPU embeddings.

Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the optimization_parameters argument to set the optimizer and its parameters. See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec for more details.

estimator = tf.estimator.tpu.TPUEstimator(
    ...
    embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
        ...
        optimization_parameters=(
            tf.tpu.experimental.StochasticGradientDescentParameters(0.1))))
Args
learning_rate a floating point value. The learning rate.
clip_weight_min the minimum value to clip by; None means -infinity.
clip_weight_max the maximum value to clip by; None means +infinity.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/tpu/experimental/StochasticGradientDescentParameters