tf.contrib.eager.run_test_in_graph_and_eager_modes
Execute the decorated test with and without enabling eager execution.
tf.contrib.eager.run_test_in_graph_and_eager_modes( func=None, config=None, use_gpu=True, reset_test=True, assert_no_eager_garbage=False )
This function returns a decorator intended to be applied to test methods in a tf.test.TestCase
class. Doing so will cause the contents of the test method to be executed twice - once normally, and once with eager execution enabled. This allows unittests to confirm the equivalence between eager and graph execution (see tf.compat.v1.enable_eager_execution
).
For example, consider the following unittest:
class MyTests(tf.test.TestCase): @run_in_graph_and_eager_modes def test_foo(self): x = tf.constant([1, 2]) y = tf.constant([3, 4]) z = tf.add(x, y) self.assertAllEqual([4, 6], self.evaluate(z)) if __name__ == "__main__": tf.test.main()
This test validates that tf.add()
has the same behavior when computed with eager execution enabled as it does when constructing a TensorFlow graph and executing the z
tensor in a session.
deprecated_graph_mode_only
, run_v1_only
, run_v2_only
, and run_in_graph_and_eager_modes
are available decorators for different v1/v2/eager/graph combinations.
Args | |
---|---|
func | function to be annotated. If func is None, this method returns a decorator the can be applied to a function. If func is not None this returns the decorator applied to func . |
config | An optional config_pb2.ConfigProto to use to configure the session when executing graphs. |
use_gpu | If True, attempt to run as many operations as possible on GPU. |
reset_test | If True, tearDown and SetUp the test case between the two executions of the test (once with and once without eager execution). |
assert_no_eager_garbage | If True, sets DEBUG_SAVEALL on the garbage collector and asserts that no extra garbage has been created when running the test with eager execution enabled. This will fail if there are reference cycles (e.g. a = []; a.append(a)). Off by default because some tests may create garbage for legitimate reasons (e.g. they define a class which inherits from object ), and because DEBUG_SAVEALL is sticky in some Python interpreters (meaning that tests which rely on objects being collected elsewhere in the unit test file will not work). Additionally, checks that nothing still has a reference to Tensors that the test allocated. |
Returns | |
---|---|
Returns a decorator that will run the decorated test method twice: once by constructing and executing a graph in a session and once with eager execution enabled. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/eager/run_test_in_graph_and_eager_modes