tf.contrib.eager.run_test_in_graph_and_eager_modes

Execute the decorated test with and without enabling eager execution.

This function returns a decorator intended to be applied to test methods in a tf.test.TestCase class. Doing so will cause the contents of the test method to be executed twice - once normally, and once with eager execution enabled. This allows unittests to confirm the equivalence between eager and graph execution (see tf.compat.v1.enable_eager_execution).

For example, consider the following unittest:

class MyTests(tf.test.TestCase):

  @run_in_graph_and_eager_modes
  def test_foo(self):
    x = tf.constant([1, 2])
    y = tf.constant([3, 4])
    z = tf.add(x, y)
    self.assertAllEqual([4, 6], self.evaluate(z))

if __name__ == "__main__":
  tf.test.main()

This test validates that tf.add() has the same behavior when computed with eager execution enabled as it does when constructing a TensorFlow graph and executing the z tensor in a session.

deprecated_graph_mode_only, run_v1_only, run_v2_only, and run_in_graph_and_eager_modes are available decorators for different v1/v2/eager/graph combinations.

Args
func function to be annotated. If func is None, this method returns a decorator the can be applied to a function. If func is not None this returns the decorator applied to func.
config An optional config_pb2.ConfigProto to use to configure the session when executing graphs.
use_gpu If True, attempt to run as many operations as possible on GPU.
reset_test If True, tearDown and SetUp the test case between the two executions of the test (once with and once without eager execution).
assert_no_eager_garbage If True, sets DEBUG_SAVEALL on the garbage collector and asserts that no extra garbage has been created when running the test with eager execution enabled. This will fail if there are reference cycles (e.g. a = []; a.append(a)). Off by default because some tests may create garbage for legitimate reasons (e.g. they define a class which inherits from object), and because DEBUG_SAVEALL is sticky in some Python interpreters (meaning that tests which rely on objects being collected elsewhere in the unit test file will not work). Additionally, checks that nothing still has a reference to Tensors that the test allocated.
Returns
Returns a decorator that will run the decorated test method twice: once by constructing and executing a graph in a session and once with eager execution enabled.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/eager/run_test_in_graph_and_eager_modes