tf.contrib.distributions.bijectors.masked_dense
A autoregressively masked dense layer. (deprecated)
tf.contrib.distributions.bijectors.masked_dense(
    inputs, units, num_blocks=None, exclusive=False, kernel_initializer=None,
    reuse=None, name=None, *args, **kwargs
)
   Analogous to tf.compat.v1.layers.dense.
See [Germain et al. (2015)][1] for detailed explanation.
| Arguments | |
|---|---|
 inputs  |  Tensor input. | 
 units  |   Python int scalar representing the dimensionality of the output space.  |  
 num_blocks  |   Python int scalar representing the number of blocks for the MADE masks.  |  
 exclusive  |   Python bool scalar representing whether to zero the diagonal of the mask, used for the first layer of a MADE.  |  
 kernel_initializer  |   Initializer function for the weight matrix. If None (default), weights are initialized using the tf.glorot_random_initializer.  |  
 reuse  |   Python bool scalar representing whether to reuse the weights of a previous layer by the same name.  |  
 name  |   Python str used to describe ops managed by this function.  |  
 *args  |   tf.compat.v1.layers.dense arguments.  |  
 **kwargs  |   tf.compat.v1.layers.dense keyword arguments.  |  
| Returns | |
|---|---|
| Output tensor. | 
| Raises | |
|---|---|
 NotImplementedError  |   if rightmost dimension of inputs is unknown prior to graph execution.  |  
References
[1]: Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Autoencoder for Distribution Estimation. In International Conference on Machine Learning, 2015. https://arxiv.org/abs/1502.03509
    © 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/distributions/bijectors/masked_dense