tf.contrib.distributions.bijectors.masked_dense
A autoregressively masked dense layer. (deprecated)
tf.contrib.distributions.bijectors.masked_dense( inputs, units, num_blocks=None, exclusive=False, kernel_initializer=None, reuse=None, name=None, *args, **kwargs )
Analogous to tf.compat.v1.layers.dense
.
See [Germain et al. (2015)][1] for detailed explanation.
Arguments | |
---|---|
inputs | Tensor input. |
units | Python int scalar representing the dimensionality of the output space. |
num_blocks | Python int scalar representing the number of blocks for the MADE masks. |
exclusive | Python bool scalar representing whether to zero the diagonal of the mask, used for the first layer of a MADE. |
kernel_initializer | Initializer function for the weight matrix. If None (default), weights are initialized using the tf.glorot_random_initializer . |
reuse | Python bool scalar representing whether to reuse the weights of a previous layer by the same name. |
name | Python str used to describe ops managed by this function. |
*args | tf.compat.v1.layers.dense arguments. |
**kwargs | tf.compat.v1.layers.dense keyword arguments. |
Returns | |
---|---|
Output tensor. |
Raises | |
---|---|
NotImplementedError | if rightmost dimension of inputs is unknown prior to graph execution. |
References
[1]: Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Autoencoder for Distribution Estimation. In International Conference on Machine Learning, 2015. https://arxiv.org/abs/1502.03509
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/distributions/bijectors/masked_dense