tf.keras.optimizers.schedules.PolynomialDecay
View source on GitHub |
A LearningRateSchedule that uses a polynomial decay schedule.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False, name=None )
Args | |
---|---|
initial_learning_rate | A scalar float32 or float64 Tensor or a Python number. The initial learning rate. |
decay_steps | A scalar int32 or int64 Tensor or a Python number. Must be positive. See the decay computation above. |
end_learning_rate | A scalar float32 or float64 Tensor or a Python number. The minimal end learning rate. |
power | A scalar float32 or float64 Tensor or a Python number. The power of the polynomial. Defaults to linear, 1.0. |
cycle | A boolean, whether or not it should cycle beyond decay_steps. |
name | String. Optional name of the operation. Defaults to 'PolynomialDecay'. |
Methods
from_config
@classmethod from_config( config )
Instantiates a LearningRateSchedule
from its config.
Args | |
---|---|
config | Output of get_config() . |
Returns | |
---|---|
A LearningRateSchedule instance. |
get_config
get_config()
__call__
__call__( step )
Call self as a function.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/optimizers/schedules/PolynomialDecay