tf.contrib.losses.metric_learning.cluster_loss
Computes the clustering loss.
tf.contrib.losses.metric_learning.cluster_loss( labels, embeddings, margin_multiplier, enable_pam_finetuning=True, margin_type='nmi', print_losses=False )
The following structured margins are supported: nmi: normalized mutual information ami: adjusted mutual information ari: adjusted random index vmeasure: v-measure const: indicator checking whether the two clusterings are the same.
Args | |
---|---|
labels | 2-D Tensor of labels of shape [batch size, 1] |
embeddings | 2-D Tensor of embeddings of shape [batch size, embedding dimension]. Embeddings should be l2 normalized. |
margin_multiplier | float32 scalar. multiplier on the structured margin term See section 3.2 of paper for discussion. |
enable_pam_finetuning | Boolean, Whether to run local pam refinement. See section 3.4 of paper for discussion. |
margin_type | Type of structured margin to use. See section 3.2 of paper for discussion. Can be 'nmi', 'ami', 'ari', 'vmeasure', 'const'. |
print_losses | Boolean. Option to print the loss. |
Paper: https://arxiv.org/abs/1612.01213
Returns | |
---|---|
clustering_loss | A float32 scalar Tensor . |
Raises | |
---|---|
ImportError | If sklearn dependency is not installed. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/losses/metric_learning/cluster_loss