tf.contrib.estimator.export_saved_model_for_mode
Exports a single train/eval/predict graph as a SavedModel. (deprecated)
tf.contrib.estimator.export_saved_model_for_mode( estimator, export_dir_base, input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None, mode=model_fn_lib.ModeKeys.PREDICT )
For a detailed guide, see Using SavedModel with Estimators.
Sample usage:
classifier = tf.estimator.LinearClassifier( feature_columns=[age, language]) classifier.train(input_fn=input_fn, steps=1000) feature_spec = { 'age': tf.placeholder(dtype=tf.int64), 'language': array_ops.placeholder(dtype=tf.string) } label_spec = tf.placeholder(dtype=dtypes.int64) train_rcvr_fn = tf.contrib.estimator.build_raw_supervised_input_receiver_fn( feature_spec, label_spec) export_dir = tf.contrib.estimator.export_saved_model_for_mode( classifier, export_dir_base='my_model/', input_receiver_fn=train_rcvr_fn, mode=model_fn_lib.ModeKeys.TRAIN) # export_dir is a timestamped directory with the SavedModel, which # can be used for serving, analysis with TFMA, or directly loaded in. with ops.Graph().as_default() as graph: with session.Session(graph=graph) as sess: loader.load(sess, [tag_constants.TRAINING], export_dir) weights = graph.get_tensor_by_name(''linear/linear_model/age/weights') ...
This method is a wrapper for _export_all_saved_models, and wraps a raw input_receiver_fn in a dictionary to pass in to that function. See _export_all_saved_models for full docs.
See tf.contrib.estimator.export_saved_model_for_mode for the currently exposed version of this function.
Args | |
---|---|
estimator | an instance of tf.estimator.Estimator |
export_dir_base | A string containing a directory in which to create timestamped subdirectories containing exported SavedModels. |
input_receiver_fn | a function that takes no argument and returns the appropriate subclass of InputReceiver . |
assets_extra | A dict specifying how to populate the assets.extra directory within the exported SavedModel, or None if no extra assets are needed. |
as_text | whether to write the SavedModel proto in text format. |
checkpoint_path | The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. |
mode | tf.estimator.ModeKeys value indicating with mode will be exported. |
Returns | |
---|---|
The string path to the exported directory. |
Raises | |
---|---|
ValueError | if input_receiver_fn is None, no export_outputs are provided, or no checkpoint can be found. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/estimator/export_saved_model_for_mode