tf.compat.v2.keras.callbacks.TensorBoard

Enable visualizations for TensorBoard.

Inherits From: Callback

TensorBoard is a visualization tool provided with TensorFlow.

This callback logs events for TensorBoard, including:

  • Metrics summary plots
  • Training graph visualization
  • Activation histograms
  • Sampled profiling

If you have installed TensorFlow with pip, you should be able to launch TensorBoard from the command line:

tensorboard --logdir=path_to_your_logs

You can find more information about TensorBoard here.

Arguments
log_dir the path of the directory where to save the log files to be parsed by TensorBoard.
histogram_freq frequency (in epochs) at which to compute activation and weight histograms for the layers of the model. If set to 0, histograms won't be computed. Validation data (or split) must be specified for histogram visualizations.
write_graph whether to visualize the graph in TensorBoard. The log file can become quite large when write_graph is set to True.
write_images whether to write model weights to visualize as image in TensorBoard.
update_freq 'batch' or 'epoch' or integer. When using 'batch', writes the losses and metrics to TensorBoard after each batch. The same applies for 'epoch'. If using an integer, let's say 1000, the callback will write the metrics and losses to TensorBoard every 1000 batches. Note that writing too frequently to TensorBoard can slow down your training.
profile_batch Profile the batch to sample compute characteristics. By default, it will profile the second batch. Set profile_batch=0 to disable profiling. Must run in TensorFlow eager mode.
embeddings_freq frequency (in epochs) at which embedding layers will be visualized. If set to 0, embeddings won't be visualized.
embeddings_metadata a dictionary which maps layer name to a file name in which metadata for this embedding layer is saved. See the details about metadata files format. In case if the same metadata file is used for all embedding layers, string can be passed.
Raises
ValueError If histogram_freq is set and no validation data is provided.

Methods

on_batch_begin

View source

A backwards compatibility alias for on_train_batch_begin.

on_batch_end

View source

A backwards compatibility alias for on_train_batch_end.

on_epoch_begin

View source

Called at the start of an epoch.

Subclasses should override for any actions to run. This function should only be called during TRAIN mode.

Arguments
epoch integer, index of epoch.
logs dict. Currently no data is passed to this argument for this method but that may change in the future.

on_epoch_end

View source

Runs metrics and histogram summaries at epoch end.

on_predict_batch_begin

View source

Called at the beginning of a batch in predict methods.

Subclasses should override for any actions to run.

Arguments
batch integer, index of batch within the current epoch.
logs dict. Has keys batch and size representing the current batch number and the size of the batch.

on_predict_batch_end

View source

Called at the end of a batch in predict methods.

Subclasses should override for any actions to run.

Arguments
batch integer, index of batch within the current epoch.
logs dict. Metric results for this batch.

on_predict_begin

View source

Called at the beginning of prediction.

Subclasses should override for any actions to run.

Arguments
logs dict. Currently no data is passed to this argument for this method but that may change in the future.

on_predict_end

View source

Called at the end of prediction.

Subclasses should override for any actions to run.

Arguments
logs dict. Currently no data is passed to this argument for this method but that may change in the future.

on_test_batch_begin

View source

Called at the beginning of a batch in evaluate methods.

Also called at the beginning of a validation batch in the fit methods, if validation data is provided.

Subclasses should override for any actions to run.

Arguments
batch integer, index of batch within the current epoch.
logs dict. Has keys batch and size representing the current batch number and the size of the batch.

on_test_batch_end

View source

Called at the end of a batch in evaluate methods.

Also called at the end of a validation batch in the fit methods, if validation data is provided.

Subclasses should override for any actions to run.

Arguments
batch integer, index of batch within the current epoch.
logs dict. Metric results for this batch.

on_test_begin

View source

Called at the beginning of evaluation or validation.

Subclasses should override for any actions to run.

Arguments
logs dict. Currently no data is passed to this argument for this method but that may change in the future.

on_test_end

View source

Called at the end of evaluation or validation.

Subclasses should override for any actions to run.

Arguments
logs dict. Currently no data is passed to this argument for this method but that may change in the future.

on_train_batch_begin

View source

Called at the beginning of a training batch in fit methods.

Subclasses should override for any actions to run.

Arguments
batch integer, index of batch within the current epoch.
logs dict. Has keys batch and size representing the current batch number and the size of the batch.

on_train_batch_end

View source

Writes scalar summaries for metrics on every training batch.

Performs profiling if current batch is in profiler_batches.

Arguments
batch Integer, index of batch within the current epoch.
logs Dict. Metric results for this batch.

on_train_begin

View source

Called at the beginning of training.

Subclasses should override for any actions to run.

Arguments
logs dict. Currently no data is passed to this argument for this method but that may change in the future.

on_train_end

View source

Called at the end of training.

Subclasses should override for any actions to run.

Arguments
logs dict. Currently no data is passed to this argument for this method but that may change in the future.

set_model

View source

Sets Keras model and writes graph if specified.

set_params

View source

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v2/keras/callbacks/TensorBoard