tf.linalg.LinearOperatorToeplitz
View source on GitHub |
LinearOperator
acting like a [batch] of toeplitz matrices.
Inherits From: LinearOperator
tf.linalg.LinearOperatorToeplitz( col, row, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, is_square=None, name='LinearOperatorToeplitz' )
This operator acts like a [batch] Toeplitz matrix A
with shape [B1,...,Bb, N, N]
for some b >= 0
. The first b
indices index a batch member. For every batch index (i1,...,ib)
, A[i1,...,ib, : :]
is an N x N
matrix. This matrix A
is not materialized, but for purposes of broadcasting this shape will be relevant.
Description in terms of toeplitz matrices
Toeplitz means that A
has constant diagonals. Hence, A
can be generated with two vectors. One represents the first column of the matrix, and the other represents the first row.
Below is a 4 x 4 example:
A = |a b c d| |e a b c| |f e a b| |g f e a|
Example of a Toeplitz operator.
# Create a 3 x 3 Toeplitz operator. col = [1., 2., 3.] row = [1., 4., -9.] operator = LinearOperatorToeplitz(col, row) operator.to_dense() ==> [[1., 4., -9.], [2., 1., 4.], [3., 2., 1.]] operator.shape ==> [3, 3] operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [3, 4] Tensor operator.matmul(x) ==> Shape [3, 4] Tensor #### Shape compatibility This operator acts on [batch] matrix with compatible shape. `x` is a batch matrix with compatible shape for `matmul` and `solve` if
operator.shape = [B1,...,Bb] + [N, N], with b >= 0 x.shape = [C1,...,Cc] + [N, R], and [C1,...,Cc] broadcasts with [B1,...,Bb] to [D1,...,Dd]
#### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning: * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a runtime assert. For example, finite floating point precision may result in these promises being violated. * If `is_X == False`, callers should expect the operator to not have `X`. * If `is_X == None` (the default), callers should have no expectation either way. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2"><h2 class="add-link">Args</h2></th></tr> <tr> <td> `col` </td> <td> Shape `[B1,...,Bb, N]` `Tensor` with `b >= 0` `N >= 0`. The first column of the operator. Allowed dtypes: `float16`, `float32`, `float64`, `complex64`, `complex128`. Note that the first entry of `col` is assumed to be the same as the first entry of `row`. </td> </tr><tr> <td> `row` </td> <td> Shape `[B1,...,Bb, N]` `Tensor` with `b >= 0` `N >= 0`. The first row of the operator. Allowed dtypes: `float16`, `float32`, `float64`, `complex64`, `complex128`. Note that the first entry of `row` is assumed to be the same as the first entry of `col`. </td> </tr><tr> <td> `is_non_singular` </td> <td> Expect that this operator is non-singular. </td> </tr><tr> <td> `is_self_adjoint` </td> <td> Expect that this operator is equal to its hermitian transpose. If `diag.dtype` is real, this is auto-set to `True`. </td> </tr><tr> <td> `is_positive_definite` </td> <td> Expect that this operator is positive definite, meaning the quadratic form `x^H A x` has positive real part for all nonzero `x`. Note that we do not require the operator to be self-adjoint to be positive-definite. See: <a href="https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices">https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices</a> </td> </tr><tr> <td> `is_square` </td> <td> Expect that this operator acts like square [batch] matrices. </td> </tr><tr> <td> `name` </td> <td> A name for this `LinearOperator`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2"><h2 class="add-link">Attributes</h2></th></tr> <tr> <td> `H` </td> <td> Returns the adjoint of the current `LinearOperator`. Given `A` representing this `LinearOperator`, return `A*`. Note that calling `self.adjoint()` and `self.H` are equivalent. </td> </tr><tr> <td> `batch_shape` </td> <td> `TensorShape` of batch dimensions of this `LinearOperator`. If this operator acts like the batch matrix `A` with `A.shape = [B1,...,Bb, M, N]`, then this returns `TensorShape([B1,...,Bb])`, equivalent to `A.shape[:-2]` </td> </tr><tr> <td> `col` </td> <td> </td> </tr><tr> <td> `domain_dimension` </td> <td> Dimension (in the sense of vector spaces) of the domain of this operator. If this operator acts like the batch matrix `A` with `A.shape = [B1,...,Bb, M, N]`, then this returns `N`. </td> </tr><tr> <td> `dtype` </td> <td> The `DType` of `Tensor`s handled by this `LinearOperator`. </td> </tr><tr> <td> `graph_parents` </td> <td> List of graph dependencies of this `LinearOperator`. </td> </tr><tr> <td> `is_non_singular` </td> <td> </td> </tr><tr> <td> `is_positive_definite` </td> <td> </td> </tr><tr> <td> `is_self_adjoint` </td> <td> </td> </tr><tr> <td> `is_square` </td> <td> Return `True/False` depending on if this operator is square. </td> </tr><tr> <td> `range_dimension` </td> <td> Dimension (in the sense of vector spaces) of the range of this operator. If this operator acts like the batch matrix `A` with `A.shape = [B1,...,Bb, M, N]`, then this returns `M`. </td> </tr><tr> <td> `row` </td> <td> </td> </tr><tr> <td> `shape` </td> <td> `TensorShape` of this `LinearOperator`. If this operator acts like the batch matrix `A` with `A.shape = [B1,...,Bb, M, N]`, then this returns `TensorShape([B1,...,Bb, M, N])`, equivalent to `A.shape`. </td> </tr><tr> <td> `tensor_rank` </td> <td> Rank (in the sense of tensors) of matrix corresponding to this operator. If this operator acts like the batch matrix `A` with `A.shape = [B1,...,Bb, M, N]`, then this returns `b + 2`. </td> </tr> </table> ## Methods <h3 id="add_to_tensor"><code>add_to_tensor</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L1014-L1027">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>add_to_tensor( x, name='add_to_tensor' ) </code></pre> Add matrix represented by this operator to `x`. Equivalent to `A + x`. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `x` </td> <td> `Tensor` with same `dtype` and shape broadcastable to `self.shape`. </td> </tr><tr> <td> `name` </td> <td> A name to give this `Op`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> A `Tensor` with broadcast shape and same `dtype` as `self`. </td> </tr> </table> <h3 id="adjoint"><code>adjoint</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L870-L885">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>adjoint( name='adjoint' ) </code></pre> Returns the adjoint of the current `LinearOperator`. Given `A` representing this `LinearOperator`, return `A*`. Note that calling `self.adjoint()` and `self.H` are equivalent. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A name for this `Op`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> `LinearOperator` which represents the adjoint of this `LinearOperator`. </td> </tr> </table> <h3 id="assert_non_singular"><code>assert_non_singular</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L485-L503">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>assert_non_singular( name='assert_non_singular' ) </code></pre> Returns an `Op` that asserts this operator is non singular. This operator is considered non-singular if
ConditionNumber < max{100, range_dimension, domain_dimension} * eps, eps := np.finfo(self.dtype.as_numpy_dtype).eps
<!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A string name to prepend to created ops. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> An `Assert` `Op`, that, when run, will raise an `InvalidArgumentError` if the operator is singular. </td> </tr> </table> <h3 id="assert_positive_definite"><code>assert_positive_definite</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L521-L536">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>assert_positive_definite( name='assert_positive_definite' ) </code></pre> Returns an `Op` that asserts this operator is positive definite. Here, positive definite means that the quadratic form `x^H A x` has positive real part for all nonzero `x`. Note that we do not require the operator to be self-adjoint to be positive definite. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A name to give this `Op`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> An `Assert` `Op`, that, when run, will raise an `InvalidArgumentError` if the operator is not positive definite. </td> </tr> </table> <h3 id="assert_self_adjoint"><code>assert_self_adjoint</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L548-L562">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>assert_self_adjoint( name='assert_self_adjoint' ) </code></pre> Returns an `Op` that asserts this operator is self-adjoint. Here we check that this operator is *exactly* equal to its hermitian transpose. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A string name to prepend to created ops. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> An `Assert` `Op`, that, when run, will raise an `InvalidArgumentError` if the operator is not self-adjoint. </td> </tr> </table> <h3 id="batch_shape_tensor"><code>batch_shape_tensor</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L319-L339">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>batch_shape_tensor( name='batch_shape_tensor' ) </code></pre> Shape of batch dimensions of this operator, determined at runtime. If this operator acts like the batch matrix `A` with `A.shape = [B1,...,Bb, M, N]`, then this returns a `Tensor` holding `[B1,...,Bb]`. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A name for this `Op`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> `int32` `Tensor` </td> </tr> </table> <h3 id="cholesky"><code>cholesky</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L915-L938">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>cholesky( name='cholesky' ) </code></pre> Returns a Cholesky factor as a `LinearOperator`. Given `A` representing this `LinearOperator`, if `A` is positive definite self-adjoint, return `L`, where `A = L L^T`, i.e. the cholesky decomposition. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A name for this `Op`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> `LinearOperator` which represents the lower triangular matrix in the Cholesky decomposition. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Raises</th></tr> <tr> <td> `ValueError` </td> <td> When the `LinearOperator` is not hinted to be positive definite and self adjoint. </td> </tr> </table> <h3 id="determinant"><code>determinant</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L678-L695">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>determinant( name='det' ) </code></pre> Determinant for every batch member. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A name for this `Op`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> `Tensor` with shape `self.batch_shape` and same `dtype` as `self`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Raises</th></tr> <tr> <td> `NotImplementedError` </td> <td> If `self.is_square` is `False`. </td> </tr> </table> <h3 id="diag_part"><code>diag_part</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L965-L991">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>diag_part( name='diag_part' ) </code></pre> Efficiently get the [batch] diagonal part of this operator. If this operator has shape `[B1,...,Bb, M, N]`, this returns a `Tensor` `diagonal`, of shape `[B1,...,Bb, min(M, N)]`, where `diagonal[b1,...,bb, i] = self.to_dense()[b1,...,bb, i, i]`.
my_operator = LinearOperatorDiag([1., 2.])
Efficiently get the diagonal
my_operator.diag_part() ==> [1., 2.]
Equivalent, but inefficient method
tf.linalg.diag_part(my_operator.to_dense()) ==> [1., 2.]
<!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A name for this `Op`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr> <td> `diag_part` </td> <td> A `Tensor` of same `dtype` as self. </td> </tr> </table> <h3 id="domain_dimension_tensor"><code>domain_dimension_tensor</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L394-L415">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>domain_dimension_tensor( name='domain_dimension_tensor' ) </code></pre> Dimension (in the sense of vector spaces) of the domain of this operator. Determined at runtime. If this operator acts like the batch matrix `A` with `A.shape = [B1,...,Bb, M, N]`, then this returns `N`. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A name for this `Op`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> `int32` `Tensor` </td> </tr> </table> <h3 id="inverse"><code>inverse</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L890-L913">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>inverse( name='inverse' ) </code></pre> Returns the Inverse of this `LinearOperator`. Given `A` representing this `LinearOperator`, return a `LinearOperator` representing `A^-1`. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A name scope to use for ops added by this method. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> `LinearOperator` representing inverse of this matrix. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Raises</th></tr> <tr> <td> `ValueError` </td> <td> When the `LinearOperator` is not hinted to be `non_singular`. </td> </tr> </table> <h3 id="log_abs_determinant"><code>log_abs_determinant</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L707-L724">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>log_abs_determinant( name='log_abs_det' ) </code></pre> Log absolute value of determinant for every batch member. <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Args</th></tr> <tr> <td> `name` </td> <td> A name for this `Op`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Returns</th></tr> <tr class="alt"> <td colspan="2"> `Tensor` with shape `self.batch_shape` and same `dtype` as `self`. </td> </tr> </table> <!-- Tabular view --> <table class="responsive fixed orange"> <colgroup><col width="214px"><col></colgroup> <tr><th colspan="2">Raises</th></tr> <tr> <td> `NotImplementedError` </td> <td> If `self.is_square` is `False`. </td> </tr> </table> <h3 id="matmul"><code>matmul</code></h3> <a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/linalg/linear_operator.py#L575-L628">View source</a> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>matmul( x, adjoint=False, adjoint_arg=False, name='matmul' ) </code></pre> Transform [batch] matrix `x` with left multiplication: `x --> Ax`. ```python # Make an operator acting like batch matrix A. Assume A.shape = [..., M, N] operator = LinearOperator(...) operator.shape = [..., M, N] X = ... # shape [..., N, R], batch matrix, R > 0. Y = operator.matmul(X) Y.shape ==> [..., M, R] Y[..., :, r] = sum_j A[..., :, j] X[j, r]
Args | |
---|---|
x | LinearOperator or Tensor with compatible shape and same dtype as self . See class docstring for definition of compatibility. |
adjoint | Python bool . If True , left multiply by the adjoint: A^H x . |
adjoint_arg | Python bool . If True , compute A x^H where x^H is the hermitian transpose (transposition and complex conjugation). |
name | A name for this Op . |
Returns | |
---|---|
A LinearOperator or Tensor with shape [..., M, R] and same dtype as self . |
matvec
matvec( x, adjoint=False, name='matvec' )
Transform [batch] vector x
with left multiplication: x --> Ax
.
# Make an operator acting like batch matric A. Assume A.shape = [..., M, N] operator = LinearOperator(...) X = ... # shape [..., N], batch vector Y = operator.matvec(X) Y.shape ==> [..., M] Y[..., :] = sum_j A[..., :, j] X[..., j]
Args | |
---|---|
x | Tensor with compatible shape and same dtype as self . x is treated as a [batch] vector meaning for every set of leading dimensions, the last dimension defines a vector. See class docstring for definition of compatibility. |
adjoint | Python bool . If True , left multiply by the adjoint: A^H x . |
name | A name for this Op . |
Returns | |
---|---|
A Tensor with shape [..., M] and same dtype as self . |
range_dimension_tensor
range_dimension_tensor( name='range_dimension_tensor' )
Dimension (in the sense of vector spaces) of the range of this operator.
Determined at runtime.
If this operator acts like the batch matrix A
with A.shape = [B1,...,Bb, M, N]
, then this returns M
.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
int32 Tensor |
shape_tensor
shape_tensor( name='shape_tensor' )
Shape of this LinearOperator
, determined at runtime.
If this operator acts like the batch matrix A
with A.shape = [B1,...,Bb, M, N]
, then this returns a Tensor
holding [B1,...,Bb, M, N]
, equivalent to tf.shape(A)
.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
int32 Tensor |
solve
solve( rhs, adjoint=False, adjoint_arg=False, name='solve' )
Solve (exact or approx) R
(batch) systems of equations: A X = rhs
.
The returned Tensor
will be close to an exact solution if A
is well conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N] operator = LinearOperator(...) operator.shape = [..., M, N] # Solve R > 0 linear systems for every member of the batch. RHS = ... # shape [..., M, R] X = operator.solve(RHS) # X[..., :, r] is the solution to the r'th linear system # sum_j A[..., :, j] X[..., j, r] = RHS[..., :, r] operator.matmul(X) ==> RHS
Args | |
---|---|
rhs | Tensor with same dtype as this operator and compatible shape. rhs is treated like a [batch] matrix meaning for every set of leading dimensions, the last two dimensions defines a matrix. See class docstring for definition of compatibility. |
adjoint | Python bool . If True , solve the system involving the adjoint of this LinearOperator : A^H X = rhs . |
adjoint_arg | Python bool . If True , solve A X = rhs^H where rhs^H is the hermitian transpose (transposition and complex conjugation). |
name | A name scope to use for ops added by this method. |
Returns | |
---|---|
Tensor with shape [...,N, R] and same dtype as rhs . |
Raises | |
---|---|
NotImplementedError | If self.is_non_singular or is_square is False. |
solvevec
solvevec( rhs, adjoint=False, name='solve' )
Solve single equation with best effort: A X = rhs
.
The returned Tensor
will be close to an exact solution if A
is well conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N] operator = LinearOperator(...) operator.shape = [..., M, N] # Solve one linear system for every member of the batch. RHS = ... # shape [..., M] X = operator.solvevec(RHS) # X is the solution to the linear system # sum_j A[..., :, j] X[..., j] = RHS[..., :] operator.matvec(X) ==> RHS
Args | |
---|---|
rhs | Tensor with same dtype as this operator. rhs is treated like a [batch] vector meaning for every set of leading dimensions, the last dimension defines a vector. See class docstring for definition of compatibility regarding batch dimensions. |
adjoint | Python bool . If True , solve the system involving the adjoint of this LinearOperator : A^H X = rhs . |
name | A name scope to use for ops added by this method. |
Returns | |
---|---|
Tensor with shape [...,N] and same dtype as rhs . |
Raises | |
---|---|
NotImplementedError | If self.is_non_singular or is_square is False. |
tensor_rank_tensor
tensor_rank_tensor( name='tensor_rank_tensor' )
Rank (in the sense of tensors) of matrix corresponding to this operator.
If this operator acts like the batch matrix A
with A.shape = [B1,...,Bb, M, N]
, then this returns b + 2
.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
int32 Tensor , determined at runtime. |
to_dense
to_dense( name='to_dense' )
Return a dense (batch) matrix representing this operator.
trace
trace( name='trace' )
Trace of the linear operator, equal to sum of self.diag_part()
.
If the operator is square, this is also the sum of the eigenvalues.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
Shape [B1,...,Bb] Tensor of same dtype as self . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/linalg/LinearOperatorToeplitz