tf.contrib.layers.conv2d_in_plane
Performs the same in-plane convolution to each channel independently.
tf.contrib.layers.conv2d_in_plane( inputs, kernel_size, stride=1, padding='SAME', activation_fn=tf.nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=tf.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None )
This is useful for performing various simple channel-independent convolution operations such as image gradients:
image = tf.constant(..., shape=(16, 240, 320, 3)) vert_gradients = layers.conv2d_in_plane(image, kernel=[1, -1], kernel_size=[2, 1]) horz_gradients = layers.conv2d_in_plane(image, kernel=[1, -1], kernel_size=[1, 2])
Args | |
---|---|
inputs | A 4-D tensor with dimensions [batch_size, height, width, channels]. |
kernel_size | A list of length 2 holding the [kernel_height, kernel_width] of of the pooling. Can be an int if both values are the same. |
stride | A list of length 2 [stride_height, stride_width] . Can be an int if both strides are the same. Note that presently both strides must have the same value. |
padding | The padding type to use, either 'SAME' or 'VALID'. |
activation_fn | Activation function. The default value is a ReLU function. Explicitly set it to None to skip it and maintain a linear activation. |
normalizer_fn | Normalization function to use instead of biases . If normalizer_fn is provided then biases_initializer and biases_regularizer are ignored and biases are not created nor added. default set to None for no normalizer function |
normalizer_params | Normalization function parameters. |
weights_initializer | An initializer for the weights. |
weights_regularizer | Optional regularizer for the weights. |
biases_initializer | An initializer for the biases. If None skip biases. |
biases_regularizer | Optional regularizer for the biases. |
reuse | Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. |
variables_collections | Optional list of collections for all the variables or a dictionary containing a different list of collection per variable. |
outputs_collections | Collection to add the outputs. |
trainable | If True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable). |
scope | Optional scope for variable_scope . |
Returns | |
---|---|
A Tensor representing the output of the operation. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/layers/conv2d_in_plane