Module: tf.contrib.distributions.bijectors
Bijector Ops.
Use tfp.bijectors instead.
Classes
class AbsoluteValue
: Computes Y = g(X) = Abs(X)
, element-wise.
class Affine
: Compute Y = g(X; shift, scale) = scale @ X + shift
.
class AffineLinearOperator
: Compute Y = g(X; shift, scale) = scale @ X + shift
.
class AffineScalar
: Compute Y = g(X; shift, scale) = scale * X + shift
.
class BatchNormalization
: Compute `Y = g(X) s.t.
class Bijector
: Interface for transformations of a Distribution
sample.
class Chain
: Bijector which applies a sequence of bijectors.
class CholeskyOuterProduct
: Compute g(X) = X @ X.T
; X is lower-triangular, positive-diagonal matrix.
class ConditionalBijector
: Conditional Bijector is a Bijector that allows intrinsic conditioning.
class Exp
: Compute Y = g(X) = exp(X)
.
class FillTriangular
: Transforms vectors to triangular.
class Gumbel
: Compute Y = g(X) = exp(-exp(-(X - loc) / scale))
.
class Identity
: Compute Y = g(X) = X.
class Inline
: Bijector constructed from custom callables.
class Invert
: Bijector which inverts another Bijector.
class Kumaraswamy
: Compute Y = g(X) = (1 - (1 - X)**(1 / b))**(1 / a), X in [0, 1]
.
class MaskedAutoregressiveFlow
: Affine MaskedAutoregressiveFlow bijector for vector-valued events.
class MatrixInverseTriL
: Computes g(L) = inv(L)
, where L
is a lower-triangular matrix.
class Ordered
: Bijector which maps a tensor x_k that has increasing elements in the last
class Permute
: Permutes the rightmost dimension of a Tensor
.
class PowerTransform
: Compute Y = g(X) = (1 + X * c)**(1 / c), X >= -1 / c
.
class RealNVP
: RealNVP "affine coupling layer" for vector-valued events.
class Reshape
: Reshapes the event_shape
of a Tensor
.
class ScaleTriL
: Transforms unconstrained vectors to TriL matrices with positive diagonal.
class Sigmoid
: Bijector which computes Y = g(X) = 1 / (1 + exp(-X))
.
class SinhArcsinh
: Compute Y = g(X) = Sinh( (Arcsinh(X) + skewness) * tailweight )
.
class SoftmaxCentered
: Bijector which computes Y = g(X) = exp([X 0]) / sum(exp([X 0]))
.
class Softplus
: Bijector which computes Y = g(X) = Log[1 + exp(X)]
.
class Softsign
: Bijector which computes Y = g(X) = X / (1 + |X|)
.
class Square
: Compute g(X) = X^2
; X is a positive real number.
class TransformDiagonal
: Applies a Bijector to the diagonal of a matrix.
Functions
masked_autoregressive_default_template(...)
: Build the Masked Autoregressive Density Estimator (Germain et al., 2015). (deprecated)
masked_dense(...)
: A autoregressively masked dense layer. (deprecated)
real_nvp_default_template(...)
: Build a scale-and-shift function using a multi-layer neural network. (deprecated)
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/distributions/bijectors