tf.contrib.checkpoint.UniqueNameTracker

Adds dependencies on trackable objects with name hints.

Useful for creating dependencies with locally unique names.

Example usage:

class SlotManager(tf.contrib.checkpoint.Checkpointable):

  def __init__(self):
    # Create a dependency named "slotdeps" on the container.
    self.slotdeps = tf.contrib.checkpoint.UniqueNameTracker()
    slotdeps = self.slotdeps
    slots = []
    slots.append(slotdeps.track(tf.Variable(3.), "x"))  # Named "x"
    slots.append(slotdeps.track(tf.Variable(4.), "y"))
    slots.append(slotdeps.track(tf.Variable(5.), "x"))  # Named "x_1"
Attributes
layers
losses Aggregate losses from any Layer instances.
non_trainable_variables
non_trainable_weights
trainable
trainable_variables
trainable_weights
updates Aggregate updates from any Layer instances.
variables
weights

Methods

track

View source

Add a dependency on trackable.

Args
trackable An object to add a checkpoint dependency on.
base_name A name hint, which is uniquified to determine the dependency name.
Returns
trackable, for chaining.
Raises
ValueError If trackable is not a trackable object.

__eq__

View source

Return self==value.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/checkpoint/UniqueNameTracker