tf.contrib.checkpoint.UniqueNameTracker
Adds dependencies on trackable objects with name hints.
tf.contrib.checkpoint.UniqueNameTracker()
Useful for creating dependencies with locally unique names.
Example usage:
class SlotManager(tf.contrib.checkpoint.Checkpointable): def __init__(self): # Create a dependency named "slotdeps" on the container. self.slotdeps = tf.contrib.checkpoint.UniqueNameTracker() slotdeps = self.slotdeps slots = [] slots.append(slotdeps.track(tf.Variable(3.), "x")) # Named "x" slots.append(slotdeps.track(tf.Variable(4.), "y")) slots.append(slotdeps.track(tf.Variable(5.), "x")) # Named "x_1"
Attributes | |
---|---|
layers | |
losses | Aggregate losses from any Layer instances. |
non_trainable_variables | |
non_trainable_weights | |
trainable | |
trainable_variables | |
trainable_weights | |
updates | Aggregate updates from any Layer instances. |
variables | |
weights |
Methods
track
track( trackable, base_name )
Add a dependency on trackable
.
Args | |
---|---|
trackable | An object to add a checkpoint dependency on. |
base_name | A name hint, which is uniquified to determine the dependency name. |
Returns | |
---|---|
trackable , for chaining. |
Raises | |
---|---|
ValueError | If trackable is not a trackable object. |
__eq__
__eq__( other )
Return self==value.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/checkpoint/UniqueNameTracker