tf.contrib.checkpoint.UniqueNameTracker
Adds dependencies on trackable objects with name hints.
tf.contrib.checkpoint.UniqueNameTracker()
Useful for creating dependencies with locally unique names.
Example usage:
class SlotManager(tf.contrib.checkpoint.Checkpointable):
def __init__(self):
# Create a dependency named "slotdeps" on the container.
self.slotdeps = tf.contrib.checkpoint.UniqueNameTracker()
slotdeps = self.slotdeps
slots = []
slots.append(slotdeps.track(tf.Variable(3.), "x")) # Named "x"
slots.append(slotdeps.track(tf.Variable(4.), "y"))
slots.append(slotdeps.track(tf.Variable(5.), "x")) # Named "x_1"
| Attributes | |
|---|---|
layers | |
losses | Aggregate losses from any Layer instances. |
non_trainable_variables | |
non_trainable_weights | |
trainable | |
trainable_variables | |
trainable_weights | |
updates | Aggregate updates from any Layer instances. |
variables | |
weights | |
Methods
track
track(
trackable, base_name
)
Add a dependency on trackable.
| Args | |
|---|---|
trackable | An object to add a checkpoint dependency on. |
base_name | A name hint, which is uniquified to determine the dependency name. |
| Returns | |
|---|---|
trackable, for chaining. |
| Raises | |
|---|---|
ValueError | If trackable is not a trackable object. |
__eq__
__eq__(
other
)
Return self==value.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/checkpoint/UniqueNameTracker