tf.contrib.layers.embedding_column
Creates an _EmbeddingColumn for feeding sparse data into a DNN.
tf.contrib.layers.embedding_column(
    sparse_id_column, dimension, combiner='mean', initializer=None,
    ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None, trainable=True
)
   
| Args | |
|---|---|
| sparse_id_column | A _SparseColumnwhich is created by for examplesparse_column_with_*or crossed_column functions. Note thatcombinerdefined insparse_id_columnis ignored. | 
| dimension | An integer specifying dimension of the embedding. | 
| combiner | A string specifying how to reduce if there are multiple entries in a single row. Currently "mean", "sqrtn" and "sum" are supported, with "mean" the default. "sqrtn" often achieves good accuracy, in particular with bag-of-words columns. Each of this can be thought as example level normalizations on the column: 
 | 
| initializer | A variable initializer function to be used in embedding variable initialization. If not specified, defaults to tf.compat.v1.truncated_normal_initializerwith mean 0.0 and standard deviation 1/sqrt(sparse_id_column.length). | 
| ckpt_to_load_from | (Optional). String representing checkpoint name/pattern to restore the column weights. Required if tensor_name_in_ckptis not None. | 
| tensor_name_in_ckpt | (Optional). Name of the Tensorin the provided checkpoint from which to restore the column weights. Required ifckpt_to_load_fromis not None. | 
| max_norm | (Optional). If not None, embedding values are l2-normalized to the value of max_norm. | 
| trainable | (Optional). Should the embedding be trainable. Default is True | 
| Returns | |
|---|---|
| An _EmbeddingColumn. | 
    © 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/layers/embedding_column