tf.keras.backend.categorical_crossentropy

View source on GitHub

Categorical crossentropy between an output tensor and a target tensor.

Arguments
target A tensor of the same shape as output.
output A tensor resulting from a softmax (unless from_logits is True, in which case output is expected to be the logits).
from_logits Boolean, whether output is the result of a softmax, or is a tensor of logits.
axis Int specifying the channels axis. axis=-1 corresponds to data format channels_last', andaxis=1corresponds to data formatchannels_first`.
Returns
Output tensor.
Raises
ValueError if axis is neither -1 nor one of the axes of output.

Example:

import tensorflow as tf
from tensorflow.keras import backend as K
a = tf.constant([1., 0., 0., 0., 1., 0., 0., 0., 1.], shape=[3,3])
print("a: ", a)
b = tf.constant([.9, .05, .05, .5, .89, .6, .05, .01, .94], shape=[3,3])
print("b: ", b)
loss = K.categorical_crossentropy(a, b)
print('Loss: ', loss) #Loss: tf.Tensor([0.10536055 0.8046684  0.06187541], shape=(3,), dtype=float32)
loss = K.categorical_crossentropy(a, a)
print('Loss: ', loss) #Loss:  tf.Tensor([1.1920929e-07 1.1920929e-07 1.1920929e-07], shape=(3,), dtype=float32)

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/backend/categorical_crossentropy