tf.contrib.distributions.bijectors.ScaleTriL
Transforms unconstrained vectors to TriL matrices with positive diagonal.
Inherits From: Chain
tf.contrib.distributions.bijectors.ScaleTriL(
diag_bijector=None, diag_shift=1e-05, validate_args=False, name='scale_tril'
)
This is implemented as a simple tfb.Chain of tfb.FillTriangular followed by tfb.TransformDiagonal, and provided mostly as a convenience. The default setup is somewhat opinionated, using a Softplus transformation followed by a small shift (1e-5) which attempts to avoid numerical issues from zeros on the diagonal.
Examples
import tensorflow_probability as tfp
tfd = tfp.distributions
tfb = tfp.bijectors
b = tfb.ScaleTriL(
diag_bijector=tfb.Exp(),
diag_shift=None)
b.forward(x=[0., 0., 0.])
# Result: [[1., 0.],
# [0., 1.]]
b.inverse(y=[[1., 0],
[.5, 2]])
# Result: [log(2), .5, log(1)]
# Define a distribution over PSD matrices of shape `[3, 3]`,
# with `1 + 2 + 3 = 6` degrees of freedom.
dist = tfd.TransformedDistribution(
tfd.Normal(tf.zeros(6), tf.ones(6)),
tfb.Chain([tfb.CholeskyOuterProduct(), tfb.ScaleTriL()]))
# Using an identity transformation, ScaleTriL is equivalent to
# tfb.FillTriangular.
b = tfb.ScaleTriL(
diag_bijector=tfb.Identity(),
diag_shift=None)
# For greater control over initialization, one can manually encode
# pre- and post- shifts inside of `diag_bijector`.
b = tfb.ScaleTriL(
diag_bijector=tfb.Chain([
tfb.AffineScalar(shift=1e-3),
tfb.Softplus(),
tfb.AffineScalar(shift=0.5413)]), # softplus_inverse(1.)
# = log(expm1(1.)) = 0.5413
diag_shift=None)
| Args |
diag_bijector | Bijector instance, used to transform the output diagonal to be positive. Default value: None (i.e., tfb.Softplus()). |
diag_shift | Float value broadcastable and added to all diagonal entries after applying the diag_bijector. Setting a positive value forces the output diagonal entries to be positive, but prevents inverting the transformation for matrices with diagonal entries less than this value. Default value: 1e-5 (i.e., no shift is applied). |
validate_args | Python bool indicating whether arguments should be checked for correctness. Default value: False (i.e., arguments are not validated). |
name | Python str name given to ops managed by this object. Default value: scale_tril. |
| Attributes |
bijectors |
|
dtype | dtype of Tensors transformable by this distribution. |
forward_min_event_ndims | Returns the minimal number of dimensions bijector.forward operates on. |
graph_parents | Returns this Bijector's graph_parents as a Python list. |
inverse_min_event_ndims | Returns the minimal number of dimensions bijector.inverse operates on. |
is_constant_jacobian | Returns true iff the Jacobian matrix is not a function of x.
Note: Jacobian matrix is either constant for both forward and inverse or neither.
|
name | Returns the string name of this Bijector. |
validate_args | Returns True if Tensor arguments will be validated. |
Methods
forward
View source
forward(
x, name='forward'
)
Returns the forward Bijector evaluation, i.e., X = g(Y).
| Args |
x | Tensor. The input to the "forward" evaluation. |
name | The name to give this op. |
| Raises |
TypeError | if self.dtype is specified and x.dtype is not self.dtype. |
NotImplementedError | if _forward is not implemented. |
forward_event_shape
View source
forward_event_shape(
input_shape
)
Shape of a single sample from a single batch as a TensorShape.
Same meaning as forward_event_shape_tensor. May be only partially defined.
| Args |
input_shape | TensorShape indicating event-portion shape passed into forward function. |
| Returns |
forward_event_shape_tensor | TensorShape indicating event-portion shape after applying forward. Possibly unknown. |
forward_event_shape_tensor
View source
forward_event_shape_tensor(
input_shape, name='forward_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32 1D Tensor.
| Args |
input_shape | Tensor, int32 vector indicating event-portion shape passed into forward function. |
name | name to give to the op |
| Returns |
forward_event_shape_tensor | Tensor, int32 vector indicating event-portion shape after applying forward. |
forward_log_det_jacobian
View source
forward_log_det_jacobian(
x, event_ndims, name='forward_log_det_jacobian'
)
Returns both the forward_log_det_jacobian.
| Args |
x | Tensor. The input to the "forward" Jacobian determinant evaluation. |
event_ndims | Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to self.forward_min_event_ndims. The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape x.shape.ndims - event_ndims dimensions. |
name | The name to give this op. |
| Returns |
Tensor, if this bijector is injective. If not injective this is not implemented. |
| Raises |
TypeError | if self.dtype is specified and y.dtype is not self.dtype. |
NotImplementedError | if neither _forward_log_det_jacobian nor {_inverse, _inverse_log_det_jacobian} are implemented, or this is a non-injective bijector. |
inverse
View source
inverse(
y, name='inverse'
)
Returns the inverse Bijector evaluation, i.e., X = g^{-1}(Y).
| Args |
y | Tensor. The input to the "inverse" evaluation. |
name | The name to give this op. |
| Returns |
Tensor, if this bijector is injective. If not injective, returns the k-tuple containing the unique k points (x1, ..., xk) such that g(xi) = y. |
| Raises |
TypeError | if self.dtype is specified and y.dtype is not self.dtype. |
NotImplementedError | if _inverse is not implemented. |
inverse_event_shape
View source
inverse_event_shape(
output_shape
)
Shape of a single sample from a single batch as a TensorShape.
Same meaning as inverse_event_shape_tensor. May be only partially defined.
| Args |
output_shape | TensorShape indicating event-portion shape passed into inverse function. |
| Returns |
inverse_event_shape_tensor | TensorShape indicating event-portion shape after applying inverse. Possibly unknown. |
inverse_event_shape_tensor
View source
inverse_event_shape_tensor(
output_shape, name='inverse_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32 1D Tensor.
| Args |
output_shape | Tensor, int32 vector indicating event-portion shape passed into inverse function. |
name | name to give to the op |
| Returns |
inverse_event_shape_tensor | Tensor, int32 vector indicating event-portion shape after applying inverse. |
inverse_log_det_jacobian
View source
inverse_log_det_jacobian(
y, event_ndims, name='inverse_log_det_jacobian'
)
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y). (Recall that: X=g^{-1}(Y).)
Note that forward_log_det_jacobian is the negative of this function, evaluated at g^{-1}(y).
| Args |
y | Tensor. The input to the "inverse" Jacobian determinant evaluation. |
event_ndims | Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to self.inverse_min_event_ndims. The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape y.shape.ndims - event_ndims dimensions. |
name | The name to give this op. |
| Returns |
Tensor, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y))), where g_i is the restriction of g to the ith partition Di. |
| Raises |
TypeError | if self.dtype is specified and y.dtype is not self.dtype. |
NotImplementedError | if _inverse_log_det_jacobian is not implemented. |