tf.tpu.experimental.shared_embedding_columns
TPU version of tf.compat.v1.feature_column.shared_embedding_columns
.
tf.tpu.experimental.shared_embedding_columns( categorical_columns, dimension, combiner='mean', initializer=None, shared_embedding_collection_name=None, max_sequence_lengths=None, learning_rate_fn=None )
Note that the interface for tf.tpu.experimental.shared_embedding_columns
is different from that of tf.compat.v1.feature_column.shared_embedding_columns
: The following arguments are NOT supported: ckpt_to_load_from
, tensor_name_in_ckpt
, max_norm
and trainable
.
Use this function in place of tf.compat.v1.feature_column.shared_embedding_columns` when you want to use the TPU to accelerate your embedding lookups via TPU embeddings.
column_a = tf.feature_column.categorical_column_with_identity(...) column_b = tf.feature_column.categorical_column_with_identity(...) tpu_columns = tf.tpu.experimental.shared_embedding_columns( [column_a, column_b], 10) ... def model_fn(features): dense_feature = tf.keras.layers.DenseFeature(tpu_columns) embedded_feature = dense_feature(features) ... estimator = tf.estimator.tpu.TPUEstimator( model_fn=model_fn, ... embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec( column=tpu_columns, ...))
Args | |
---|---|
categorical_columns | A list of categorical columns returned from categorical_column_with_identity , weighted_categorical_column , categorical_column_with_vocabulary_file , categorical_column_with_vocabulary_list , sequence_categorical_column_with_identity , sequence_categorical_column_with_vocabulary_file , sequence_categorical_column_with_vocabulary_list |
dimension | An integer specifying dimension of the embedding, must be > 0. |
combiner | A string specifying how to reduce if there are multiple entries in a single row for a non-sequence column. For more information, see tf.feature_column.embedding_column . |
initializer | A variable initializer function to be used in embedding variable initialization. If not specified, defaults to tf.truncated_normal_initializer with mean 0.0 and standard deviation 1/sqrt(dimension) . |
shared_embedding_collection_name | Optional name of the collection where shared embedding weights are added. If not given, a reasonable name will be chosen based on the names of categorical_columns . This is also used in variable_scope when creating shared embedding weights. |
max_sequence_lengths | An list of non-negative integers, either None or empty or the same length as the argument categorical_columns. Entries corresponding to non-sequence columns must be 0 and entries corresponding to sequence columns specify the max sequence length for the column. Any sequence shorter then this will be padded with 0 embeddings and any sequence longer will be truncated. |
learning_rate_fn | A function that takes global step and returns learning rate for the embedding table. |
Returns | |
---|---|
A list of _TPUSharedEmbeddingColumnV2 . |
Raises | |
---|---|
ValueError | if dimension not > 0. |
ValueError | if initializer is specified but not callable. |
ValueError | if max_sequence_lengths is specified and not the same length as categorical_columns . |
ValueError | if max_sequence_lengths is positive for a non sequence column or 0 for a sequence column. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/tpu/experimental/shared_embedding_columns