tf.contrib.distributions.bijectors.CholeskyOuterProduct
Compute g(X) = X @ X.T
; X is lower-triangular, positive-diagonal matrix.
Inherits From: Bijector
tf.contrib.distributions.bijectors.CholeskyOuterProduct(
validate_args=False, name='cholesky_outer_product'
)
Note: the upper-triangular part of X is ignored (whether or not its zero).
The surjectivity of g as a map from the set of n x n positive-diagonal lower-triangular matrices to the set of SPD matrices follows immediately from executing the Cholesky factorization algorithm on an SPD matrix A to produce a positive-diagonal lower-triangular matrix L such that A = L @ L.T
.
To prove the injectivity of g, suppose that L_1 and L_2 are lower-triangular with positive diagonals and satisfy A = L_1 @ L_1.T = L_2 @ L_2.T
. Then inv(L_1) @ A @ inv(L_1).T = [inv(L_1) @ L_2] @ [inv(L_1) @ L_2].T = I
. Setting L_3 := inv(L_1) @ L_2
, that L_3 is a positive-diagonal lower-triangular matrix follows from inv(L_1)
being positive-diagonal lower-triangular (which follows from the diagonal of a triangular matrix being its spectrum), and that the product of two positive-diagonal lower-triangular matrices is another positive-diagonal lower-triangular matrix.
A simple inductive argument (proceeding one column of L_3 at a time) shows that, if I = L_3 @ L_3.T
, with L_3 being lower-triangular with positive- diagonal, then L_3 = I
. Thus, L_1 = L_2
, proving injectivity of g.
Examples
bijector.CholeskyOuterProduct().forward(x=[[1., 0], [2, 1]])
# Result: [[1., 2], [2, 5]], i.e., x @ x.T
bijector.CholeskyOuterProduct().inverse(y=[[1., 2], [2, 5]])
# Result: [[1., 0], [2, 1]], i.e., cholesky(y).
Args |
validate_args | Python bool indicating whether arguments should be checked for correctness. |
name | Python str name given to ops managed by this object. |
Attributes |
dtype | dtype of Tensor s transformable by this distribution. |
forward_min_event_ndims | Returns the minimal number of dimensions bijector.forward operates on. |
graph_parents | Returns this Bijector 's graph_parents as a Python list. |
inverse_min_event_ndims | Returns the minimal number of dimensions bijector.inverse operates on. |
is_constant_jacobian | Returns true iff the Jacobian matrix is not a function of x.
Note: Jacobian matrix is either constant for both forward and inverse or neither.
|
name | Returns the string name of this Bijector . |
validate_args | Returns True if Tensor arguments will be validated. |
Methods
forward
View source
forward(
x, name='forward'
)
Returns the forward Bijector
evaluation, i.e., X = g(Y).
Args |
x | Tensor . The input to the "forward" evaluation. |
name | The name to give this op. |
Raises |
TypeError | if self.dtype is specified and x.dtype is not self.dtype . |
NotImplementedError | if _forward is not implemented. |
forward_event_shape
View source
forward_event_shape(
input_shape
)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as forward_event_shape_tensor
. May be only partially defined.
Args |
input_shape | TensorShape indicating event-portion shape passed into forward function. |
Returns |
forward_event_shape_tensor | TensorShape indicating event-portion shape after applying forward . Possibly unknown. |
forward_event_shape_tensor
View source
forward_event_shape_tensor(
input_shape, name='forward_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args |
input_shape | Tensor , int32 vector indicating event-portion shape passed into forward function. |
name | name to give to the op |
Returns |
forward_event_shape_tensor | Tensor , int32 vector indicating event-portion shape after applying forward . |
forward_log_det_jacobian
View source
forward_log_det_jacobian(
x, event_ndims, name='forward_log_det_jacobian'
)
Returns both the forward_log_det_jacobian.
Args |
x | Tensor . The input to the "forward" Jacobian determinant evaluation. |
event_ndims | Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to self.forward_min_event_ndims . The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape x.shape.ndims - event_ndims dimensions. |
name | The name to give this op. |
Returns |
Tensor , if this bijector is injective. If not injective this is not implemented. |
Raises |
TypeError | if self.dtype is specified and y.dtype is not self.dtype . |
NotImplementedError | if neither _forward_log_det_jacobian nor {_inverse , _inverse_log_det_jacobian } are implemented, or this is a non-injective bijector. |
inverse
View source
inverse(
y, name='inverse'
)
Returns the inverse Bijector
evaluation, i.e., X = g^{-1}(Y).
Args |
y | Tensor . The input to the "inverse" evaluation. |
name | The name to give this op. |
Returns |
Tensor , if this bijector is injective. If not injective, returns the k-tuple containing the unique k points (x1, ..., xk) such that g(xi) = y . |
Raises |
TypeError | if self.dtype is specified and y.dtype is not self.dtype . |
NotImplementedError | if _inverse is not implemented. |
inverse_event_shape
View source
inverse_event_shape(
output_shape
)
Shape of a single sample from a single batch as a TensorShape
.
Same meaning as inverse_event_shape_tensor
. May be only partially defined.
Args |
output_shape | TensorShape indicating event-portion shape passed into inverse function. |
Returns |
inverse_event_shape_tensor | TensorShape indicating event-portion shape after applying inverse . Possibly unknown. |
inverse_event_shape_tensor
View source
inverse_event_shape_tensor(
output_shape, name='inverse_event_shape_tensor'
)
Shape of a single sample from a single batch as an int32
1D Tensor
.
Args |
output_shape | Tensor , int32 vector indicating event-portion shape passed into inverse function. |
name | name to give to the op |
Returns |
inverse_event_shape_tensor | Tensor , int32 vector indicating event-portion shape after applying inverse . |
inverse_log_det_jacobian
View source
inverse_log_det_jacobian(
y, event_ndims, name='inverse_log_det_jacobian'
)
Returns the (log o det o Jacobian o inverse)(y).
Mathematically, returns: log(det(dX/dY))(Y)
. (Recall that: X=g^{-1}(Y)
.)
Note that forward_log_det_jacobian
is the negative of this function, evaluated at g^{-1}(y)
.
Args |
y | Tensor . The input to the "inverse" Jacobian determinant evaluation. |
event_ndims | Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to self.inverse_min_event_ndims . The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape y.shape.ndims - event_ndims dimensions. |
name | The name to give this op. |
Returns |
Tensor , if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y))) , where g_i is the restriction of g to the ith partition Di . |
Raises |
TypeError | if self.dtype is specified and y.dtype is not self.dtype . |
NotImplementedError | if _inverse_log_det_jacobian is not implemented. |