tf.contrib.seq2seq.AttentionWrapperState
namedtuple
storing the state of a AttentionWrapper
.
tf.contrib.seq2seq.AttentionWrapperState( cell_state, attention, time, alignments, alignment_history, attention_state )
Contains:
-
cell_state
: The state of the wrappedRNNCell
at the previous time step. -
attention
: The attention emitted at the previous time step. -
time
: int32 scalar containing the current time step. -
alignments
: A single or tuple ofTensor
(s) containing the alignments emitted at the previous time step for each attention mechanism. -
alignment_history
: (if enabled) a single or tuple ofTensorArray
(s) containing alignment matrices from all time steps for each attention mechanism. Callstack()
on each to convert to aTensor
. -
attention_state
: A single or tuple of nested objects containing attention mechanism state for each attention mechanism. The objects may contain Tensors or TensorArrays.
Attributes | |
---|---|
cell_state | |
attention | |
time | |
alignments | |
alignment_history | |
attention_state |
Methods
clone
clone( **kwargs )
Clone this object, overriding components provided by kwargs.
The new state fields' shape must match original state fields' shape. This will be validated, and original fields' shape will be propagated to new fields.
Example:
initial_state = attention_wrapper.zero_state(dtype=..., batch_size=...) initial_state = initial_state.clone(cell_state=encoder_state)
Args | |
---|---|
**kwargs | Any properties of the state object to replace in the returned AttentionWrapperState . |
Returns | |
---|---|
A new AttentionWrapperState whose properties are the same as this one, except any overridden properties as provided in kwargs . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/seq2seq/AttentionWrapperState