tf.contrib.distributions.quadrature_scheme_softmaxnormal_gauss_hermite
Use Gauss-Hermite quadrature to form quadrature on K - 1
simplex. (deprecated)
tf.contrib.distributions.quadrature_scheme_softmaxnormal_gauss_hermite( normal_loc, normal_scale, quadrature_size, validate_args=False, name=None )
A SoftmaxNormal
random variable Y
may be generated via
Y = SoftmaxCentered(X), X = Normal(normal_loc, normal_scale)
Note: for a givenquadrature_size
, this method is generally less accurate thanquadrature_scheme_softmaxnormal_quantiles
.
Args | |
---|---|
normal_loc | float -like Tensor with shape [b1, ..., bB, K-1] , B>=0. The location parameter of the Normal used to construct the SoftmaxNormal. |
normal_scale | float -like Tensor . Broadcastable with normal_loc . The scale parameter of the Normal used to construct the SoftmaxNormal. |
quadrature_size | Python int scalar representing the number of quadrature points. |
validate_args | Python bool , default False . When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs. |
name | Python str name prefixed to Ops created by this class. |
Returns | |
---|---|
grid | Shape [b1, ..., bB, K, quadrature_size] Tensor representing the convex combination of affine parameters for K components. grid[..., :, n] is the n -th grid point, living in the K - 1 simplex. |
probs | Shape [b1, ..., bB, K, quadrature_size] Tensor representing the associated with each grid point. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/distributions/quadrature_scheme_softmaxnormal_gauss_hermite