tf.data.experimental.DistributeOptions
View source on GitHub |
Represents options for distributed data processing.
tf.data.experimental.DistributeOptions()
You can set the distribution options of a dataset through the experimental_distribute
property of tf.data.Options
; the property is an instance of tf.data.experimental.DistributeOptions
.
options = tf.data.Options() options.experimental_distribute.auto_shard = False dataset = dataset.with_options(options)
Attributes | |
---|---|
auto_shard | Whether the dataset should be automatically sharded when processedin a distributed fashion. This is applicable when using Keras with multi-worker/TPU distribution strategy, and by using strategy.experimental_distribute_dataset(). In other cases, this option does nothing. If None, defaults to True. |
num_devices | The number of devices attached to this input pipeline. This will be automatically set by MultiDeviceIterator. |
Methods
__eq__
__eq__( other )
Return self==value.
__ne__
__ne__( other )
Return self!=value.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/data/experimental/DistributeOptions