tf.contrib.distributions.bijectors.AffineLinearOperator

Compute Y = g(X; shift, scale) = scale @ X + shift.

Inherits From: Bijector

shift is a numeric Tensor and scale is a LinearOperator.

If X is a scalar then the forward transformation is: scale * X + shift where * denotes the scalar product.

Note: we don't always simply transpose X (but write it this way for brevity). Actually the input X undergoes the following transformation before being premultiplied by scale:
  1. If there are no sample dims, we call X = tf.expand_dims(X, 0), i.e., new_sample_shape = [1]. Otherwise do nothing.
  2. The sample shape is flattened to have one dimension, i.e., new_sample_shape = [n] where n = tf.reduce_prod(old_sample_shape).
  3. The sample dim is cyclically rotated left by 1, i.e., new_shape = [B1,...,Bb, k, n] where n is as above, k is the event_shape, and B1,...,Bb are the batch shapes for each of b batch dimensions.

(For more details see shape.make_batch_of_event_sample_matrices.)

The result of the above transformation is that X can be regarded as a batch of matrices where each column is a draw from the distribution. After premultiplying by scale, we take the inverse of this procedure. The input Y also undergoes the same transformation before/after premultiplying by inv(scale).

Example Use:

linalg = tf.linalg

x = [1., 2, 3]

shift = [-1., 0., 1]
diag = [1., 2, 3]
scale = linalg.LinearOperatorDiag(diag)
affine = AffineLinearOperator(shift, scale)
# In this case, `forward` is equivalent to:
# y = scale @ x + shift
y = affine.forward(x)  # [0., 4, 10]

shift = [2., 3, 1]
tril = [[1., 0, 0],
        [2, 1, 0],
        [3, 2, 1]]
scale = linalg.LinearOperatorLowerTriangular(tril)
affine = AffineLinearOperator(shift, scale)
# In this case, `forward` is equivalent to:
# np.squeeze(np.matmul(tril, np.expand_dims(x, -1)), -1) + shift
y = affine.forward(x)  # [3., 7, 11]
Args
shift Floating-point Tensor.
scale Subclass of LinearOperator. Represents the (batch) positive definite matrix M in R^{k x k}.
validate_args Python bool indicating whether arguments should be checked for correctness.
name Python str name given to ops managed by this object.
Raises
TypeError if scale is not a LinearOperator.
TypeError if shift.dtype does not match scale.dtype.
ValueError if not scale.is_non_singular.
Attributes
dtype dtype of Tensors transformable by this distribution.
forward_min_event_ndims Returns the minimal number of dimensions bijector.forward operates on.
graph_parents Returns this Bijector's graph_parents as a Python list.
inverse_min_event_ndims Returns the minimal number of dimensions bijector.inverse operates on.
is_constant_jacobian Returns true iff the Jacobian matrix is not a function of x.
Note: Jacobian matrix is either constant for both forward and inverse or neither.
name Returns the string name of this Bijector.
scale The scale LinearOperator in Y = scale @ X + shift.
shift The shift Tensor in Y = scale @ X + shift.
validate_args Returns True if Tensor arguments will be validated.

Methods

forward

View source

Returns the forward Bijector evaluation, i.e., X = g(Y).

Args
x Tensor. The input to the "forward" evaluation.
name The name to give this op.
Returns
Tensor.
Raises
TypeError if self.dtype is specified and x.dtype is not self.dtype.
NotImplementedError if _forward is not implemented.

forward_event_shape

View source

Shape of a single sample from a single batch as a TensorShape.

Same meaning as forward_event_shape_tensor. May be only partially defined.

Args
input_shape TensorShape indicating event-portion shape passed into forward function.
Returns
forward_event_shape_tensor TensorShape indicating event-portion shape after applying forward. Possibly unknown.

forward_event_shape_tensor

View source

Shape of a single sample from a single batch as an int32 1D Tensor.

Args
input_shape Tensor, int32 vector indicating event-portion shape passed into forward function.
name name to give to the op
Returns
forward_event_shape_tensor Tensor, int32 vector indicating event-portion shape after applying forward.

forward_log_det_jacobian

View source

Returns both the forward_log_det_jacobian.

Args
x Tensor. The input to the "forward" Jacobian determinant evaluation.
event_ndims Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to self.forward_min_event_ndims. The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape x.shape.ndims - event_ndims dimensions.
name The name to give this op.
Returns
Tensor, if this bijector is injective. If not injective this is not implemented.
Raises
TypeError if self.dtype is specified and y.dtype is not self.dtype.
NotImplementedError if neither _forward_log_det_jacobian nor {_inverse, _inverse_log_det_jacobian} are implemented, or this is a non-injective bijector.

inverse

View source

Returns the inverse Bijector evaluation, i.e., X = g^{-1}(Y).

Args
y Tensor. The input to the "inverse" evaluation.
name The name to give this op.
Returns
Tensor, if this bijector is injective. If not injective, returns the k-tuple containing the unique k points (x1, ..., xk) such that g(xi) = y.
Raises
TypeError if self.dtype is specified and y.dtype is not self.dtype.
NotImplementedError if _inverse is not implemented.

inverse_event_shape

View source

Shape of a single sample from a single batch as a TensorShape.

Same meaning as inverse_event_shape_tensor. May be only partially defined.

Args
output_shape TensorShape indicating event-portion shape passed into inverse function.
Returns
inverse_event_shape_tensor TensorShape indicating event-portion shape after applying inverse. Possibly unknown.

inverse_event_shape_tensor

View source

Shape of a single sample from a single batch as an int32 1D Tensor.

Args
output_shape Tensor, int32 vector indicating event-portion shape passed into inverse function.
name name to give to the op
Returns
inverse_event_shape_tensor Tensor, int32 vector indicating event-portion shape after applying inverse.

inverse_log_det_jacobian

View source

Returns the (log o det o Jacobian o inverse)(y).

Mathematically, returns: log(det(dX/dY))(Y). (Recall that: X=g^{-1}(Y).)

Note that forward_log_det_jacobian is the negative of this function, evaluated at g^{-1}(y).

Args
y Tensor. The input to the "inverse" Jacobian determinant evaluation.
event_ndims Number of dimensions in the probabilistic events being transformed. Must be greater than or equal to self.inverse_min_event_ndims. The result is summed over the final dimensions to produce a scalar Jacobian determinant for each event, i.e. it has shape y.shape.ndims - event_ndims dimensions.
name The name to give this op.
Returns
Tensor, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, log(det(Dg_i^{-1}(y))), where g_i is the restriction of g to the ith partition Di.
Raises
TypeError if self.dtype is specified and y.dtype is not self.dtype.
NotImplementedError if _inverse_log_det_jacobian is not implemented.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/distributions/bijectors/AffineLinearOperator