tf.contrib.feature_column.sequence_categorical_column_with_hash_bucket
A sequence of categorical terms where ids are set by hashing.
tf.contrib.feature_column.sequence_categorical_column_with_hash_bucket( key, hash_bucket_size, dtype=tf.dtypes.string )
Pass this to embedding_column
or indicator_column
to convert sequence categorical data into dense representation for input to sequence NN, such as RNN.
Example:
tokens = sequence_categorical_column_with_hash_bucket( 'tokens', hash_bucket_size=1000) tokens_embedding = embedding_column(tokens, dimension=10) columns = [tokens_embedding] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) input_layer, sequence_length = sequence_input_layer(features, columns) rnn_cell = tf.compat.v1.nn.rnn_cell.BasicRNNCell(hidden_size) outputs, state = tf.compat.v1.nn.dynamic_rnn( rnn_cell, inputs=input_layer, sequence_length=sequence_length)
Args | |
---|---|
key | A unique string identifying the input feature. |
hash_bucket_size | An int > 1. The number of buckets. |
dtype | The type of features. Only string and integer types are supported. |
Returns | |
---|---|
A _SequenceCategoricalColumn . |
Raises | |
---|---|
ValueError | hash_bucket_size is not greater than 1. |
ValueError | dtype is neither string nor integer. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/feature_column/sequence_categorical_column_with_hash_bucket