tf.keras.layers.ReLU
View source on GitHub |
Rectified Linear Unit activation function.
Inherits From: Layer
tf.keras.layers.ReLU( max_value=None, negative_slope=0, threshold=0, **kwargs )
With default values, it returns element-wise max(x, 0)
.
Otherwise, it follows: f(x) = max_value
for x >= max_value
, f(x) = x
for threshold <= x < max_value
, f(x) = negative_slope * (x - threshold)
otherwise.
Input shape:
Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the samples axis) when using this layer as the first layer in a model.
Output shape:
Same shape as the input.
Arguments | |
---|---|
max_value | Float >= 0. Maximum activation value. |
negative_slope | Float >= 0. Negative slope coefficient. |
threshold | Float. Threshold value for thresholded activation. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/layers/ReLU