tf.compat.v2.keras.initializers.TruncatedNormal
Initializer that generates a truncated normal distribution.
Inherits From: Initializer
tf.compat.v2.keras.initializers.TruncatedNormal( mean=0.0, stddev=0.05, seed=None )
These values are similar to values from a random_normal_initializer
except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters.
Args | |
---|---|
mean | a python scalar or a scalar tensor. Mean of the random values to generate. |
stddev | a python scalar or a scalar tensor. Standard deviation of the random values to generate. |
seed | A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seed for behavior. |
Methods
from_config
@classmethod from_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config)
Args | |
---|---|
config | A Python dictionary. It will typically be the output of get_config . |
Returns | |
---|---|
An Initializer instance. |
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns | |
---|---|
A JSON-serializable Python dict. |
__call__
__call__( shape, dtype=tf.dtypes.float32 )
Returns a tensor object initialized as specified by the initializer.
Args | |
---|---|
shape | Shape of the tensor. |
dtype | Optional dtype of the tensor. Only floating point types are supported. |
Raises | |
---|---|
ValueError | If the dtype is not floating point |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v2/keras/initializers/TruncatedNormal