tf.compat.v2.random.set_seed

Sets the graph-level random seed.

Operations that rely on a random seed actually derive it from two seeds: the graph-level and operation-level seeds. This sets the graph-level seed.

Its interactions with operation-level seeds is as follows:

  1. If neither the graph-level nor the operation seed is set: A random seed is used for this op.
  2. If the graph-level seed is set, but the operation seed is not: The system deterministically picks an operation seed in conjunction with the graph-level seed so that it gets a unique random sequence.
  3. If the graph-level seed is not set, but the operation seed is set: A default graph-level seed and the specified operation seed are used to determine the random sequence.
  4. If both the graph-level and the operation seed are set: Both seeds are used in conjunction to determine the random sequence.

To illustrate the user-visible effects, consider these examples:

To generate different sequences across sessions, set neither graph-level nor op-level seeds:

a = tf.random.uniform([1])
b = tf.random.normal([1])

print("Session 1")
with tf.compat.v1.Session() as sess1:
  print(sess1.run(a))  # generates 'A1'
  print(sess1.run(a))  # generates 'A2'
  print(sess1.run(b))  # generates 'B1'
  print(sess1.run(b))  # generates 'B2'

print("Session 2")
with tf.compat.v1.Session() as sess2:
  print(sess2.run(a))  # generates 'A3'
  print(sess2.run(a))  # generates 'A4'
  print(sess2.run(b))  # generates 'B3'
  print(sess2.run(b))  # generates 'B4'

To generate the same repeatable sequence for an op across sessions, set the seed for the op:

a = tf.random.uniform([1], seed=1)
b = tf.random.normal([1])

# Repeatedly running this block with the same graph will generate the same
# sequence of values for 'a', but different sequences of values for 'b'.
print("Session 1")
with tf.compat.v1.Session() as sess1:
  print(sess1.run(a))  # generates 'A1'
  print(sess1.run(a))  # generates 'A2'
  print(sess1.run(b))  # generates 'B1'
  print(sess1.run(b))  # generates 'B2'

print("Session 2")
with tf.compat.v1.Session() as sess2:
  print(sess2.run(a))  # generates 'A1'
  print(sess2.run(a))  # generates 'A2'
  print(sess2.run(b))  # generates 'B3'
  print(sess2.run(b))  # generates 'B4'

To make the random sequences generated by all ops be repeatable across sessions, set a graph-level seed:

tf.random.set_seed(1234)
a = tf.random.uniform([1])
b = tf.random.normal([1])

# Repeatedly running this block with the same graph will generate the same
# sequences of 'a' and 'b'.
print("Session 1")
with tf.compat.v1.Session() as sess1:
  print(sess1.run(a))  # generates 'A1'
  print(sess1.run(a))  # generates 'A2'
  print(sess1.run(b))  # generates 'B1'
  print(sess1.run(b))  # generates 'B2'

print("Session 2")
with tf.compat.v1.Session() as sess2:
  print(sess2.run(a))  # generates 'A1'
  print(sess2.run(a))  # generates 'A2'
  print(sess2.run(b))  # generates 'B1'
  print(sess2.run(b))  # generates 'B2'
Args
seed integer.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v2/random/set_seed