tf.nn.conv2d_backprop_filter
Computes the gradients of convolution with respect to the filter.
tf.nn.conv2d_backprop_filter( input, filter_sizes, out_backprop, strides, padding, use_cudnn_on_gpu=True, data_format='NHWC', dilations=[1, 1, 1, 1], name=None )
Args | ||
---|---|---|
input | A Tensor . Must be one of the following types: half , bfloat16 , float32 , float64 . 4-D with shape [batch, in_height, in_width, in_channels] . | |
filter_sizes | A Tensor of type int32 . An integer vector representing the tensor shape of filter , where filter is a 4-D [filter_height, filter_width, in_channels, out_channels] tensor. | |
out_backprop | A Tensor . Must have the same type as input . 4-D with shape [batch, out_height, out_width, out_channels] . Gradients w.r.t. the output of the convolution. | |
strides | A list of ints . The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format. | |
padding | Either the string "SAME"or "VALID"indicating the type of padding algorithm to use, or a list indicating the explicit paddings at the start and end of each dimension. When explicit padding is used and data_format is "NHWC", this should be in the form [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]]. When explicit padding used and data_format is "NCHW", this should be in the form [[0, 0], [0, 0], [pad_top, pad_bottom], [pad_left, pad_right]]. </td> </tr><tr> <td> use_cudnn_on_gpu</td> <td> An optional bool. Defaults to True. </td> </tr><tr> <td> data_format</td> <td> An optional stringfrom: "NHWC", "NCHW". Defaults to "NHWC". Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width]. </td> </tr><tr> <td> dilations</td> <td> An optional list of ints. Defaults to [1, 1, 1, 1]. 1-D tensor of length 4. The dilation factor for each dimension of input. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of data_format, see above for details. Dilations in the batch and depth dimensions must be 1. </td> </tr><tr> <td> name` | A name for the operation (optional). |
Returns | |
---|---|
A Tensor . Has the same type as input . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/nn/conv2d_backprop_filter