tf.contrib.layers.bias_add
Adds a bias to the inputs.
tf.contrib.layers.bias_add( inputs, activation_fn=None, initializer=tf.zeros_initializer(), regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, data_format=DATA_FORMAT_NHWC, scope=None )
Can be used as a normalizer function for conv2d and fully_connected.
Args | |
---|---|
inputs | A tensor of with at least rank 2 and value for the last dimension, e.g. [batch_size, depth] , [None, None, None, depth] . |
activation_fn | Activation function, default set to None to skip it and maintain a linear activation. |
initializer | An initializer for the bias, defaults to 0. |
regularizer | A regularizer like the result of l1_regularizer or l2_regularizer . |
reuse | Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. |
variables_collections | Optional collections for the variables. |
outputs_collections | Collections to add the outputs. |
trainable | If True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable). |
data_format | A string. 'NHWC' and 'NCHW' are supported. |
scope | Optional scope for variable_scope. |
Returns | |
---|---|
A tensor representing the result of adding biases to the inputs. |
Raises | |
---|---|
ValueError | If data_format is neither NHWC nor NCHW . |
ValueError | If data_format is NCHW and rank of inputs is not 4. |
ValueError | If the rank of inputs is undefined. |
ValueError | If rank or C dimension of inputs is undefined. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/layers/bias_add