tf.contrib.layers.bias_add
Adds a bias to the inputs.
tf.contrib.layers.bias_add(
    inputs, activation_fn=None, initializer=tf.zeros_initializer(),
    regularizer=None, reuse=None, variables_collections=None,
    outputs_collections=None, trainable=True, data_format=DATA_FORMAT_NHWC,
    scope=None
)
  Can be used as a normalizer function for conv2d and fully_connected.
| Args | |
|---|---|
 inputs  |   A tensor of with at least rank 2 and value for the last dimension, e.g. [batch_size, depth], [None, None, None, depth].  |  
 activation_fn  |  Activation function, default set to None to skip it and maintain a linear activation. | 
 initializer  |  An initializer for the bias, defaults to 0. | 
 regularizer  |   A regularizer like the result of l1_regularizer or l2_regularizer.  |  
 reuse  |  Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. | 
 variables_collections  |  Optional collections for the variables. | 
 outputs_collections  |  Collections to add the outputs. | 
 trainable  |   If True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).  |  
 data_format  |  A string. 'NHWC' and 'NCHW' are supported. | 
 scope  |  Optional scope for variable_scope. | 
| Returns | |
|---|---|
| A tensor representing the result of adding biases to the inputs. | 
| Raises | |
|---|---|
 ValueError  |   If data_format is neither NHWC nor NCHW.  |  
 ValueError  |   If data_format is NCHW and rank of inputs is not 4.  |  
 ValueError  |   If the rank of inputs is undefined.  |  
 ValueError  |   If rank or C dimension of inputs is undefined.  |  
    © 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/layers/bias_add