tf.linalg.LinearOperatorLowRankUpdate
View source on GitHub |
Perturb a LinearOperator
with a rank K
update.
Inherits From: LinearOperator
tf.linalg.LinearOperatorLowRankUpdate( base_operator, u, diag_update=None, v=None, is_diag_update_positive=None, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, is_square=None, name='LinearOperatorLowRankUpdate' )
This operator acts like a [batch] matrix A
with shape [B1,...,Bb, M, N]
for some b >= 0
. The first b
indices index a batch member. For every batch index (i1,...,ib)
, A[i1,...,ib, : :]
is an M x N
matrix.
LinearOperatorLowRankUpdate
represents A = L + U D V^H
, where
L, is a LinearOperator representing [batch] M x N matrices U, is a [batch] M x K matrix. Typically K << M. D, is a [batch] K x K matrix. V, is a [batch] N x K matrix. Typically K << N. V^H is the Hermitian transpose (adjoint) of V.
If M = N
, determinants and solves are done using the matrix determinant lemma and Woodbury identities, and thus require L and D to be non-singular.
Solves and determinants will be attempted unless the "is_non_singular" property of L and D is False.
In the event that L and D are positive-definite, and U = V, solves and determinants can be done using a Cholesky factorization.
# Create a 3 x 3 diagonal linear operator. diag_operator = LinearOperatorDiag( diag_update=[1., 2., 3.], is_non_singular=True, is_self_adjoint=True, is_positive_definite=True) # Perturb with a rank 2 perturbation operator = LinearOperatorLowRankUpdate( operator=diag_operator, u=[[1., 2.], [-1., 3.], [0., 0.]], diag_update=[11., 12.], v=[[1., 2.], [-1., 3.], [10., 10.]]) operator.shape ==> [3, 3] operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [3, 4] Tensor operator.matmul(x) ==> Shape [3, 4] Tensor
Shape compatibility
This operator acts on [batch] matrix with compatible shape. x
is a batch matrix with compatible shape for matmul
and solve
if
operator.shape = [B1,...,Bb] + [M, N], with b >= 0 x.shape = [B1,...,Bb] + [N, R], with R >= 0.
Performance
Suppose operator
is a LinearOperatorLowRankUpdate
of shape [M, N]
, made from a rank K
update of base_operator
which performs .matmul(x)
on x
having x.shape = [N, R]
with O(L_matmul*N*R)
complexity (and similarly for solve
, determinant
. Then, if x.shape = [N, R]
,
-
operator.matmul(x)
isO(L_matmul*N*R + K*N*R)
and if M = N
,
-
operator.solve(x)
isO(L_matmul*N*R + N*K*R + K^2*R + K^3)
-
operator.determinant()
isO(L_determinant + L_solve*N*K + K^2*N + K^3)
If instead operator
and x
have shape [B1,...,Bb, M, N]
and [B1,...,Bb, N, R]
, every operation increases in complexity by B1*...*Bb
.
Matrix property hints
This LinearOperator
is initialized with boolean flags of the form is_X
, for X = non_singular
, self_adjoint
, positive_definite
, diag_update_positive
and square
. These have the following meaning:
- If
is_X == True
, callers should expect the operator to have the propertyX
. This is a promise that should be fulfilled, but is not a runtime assert. For example, finite floating point precision may result in these promises being violated. - If
is_X == False
, callers should expect the operator to not haveX
. - If
is_X == None
(the default), callers should have no expectation either way.
Args | |
---|---|
base_operator | Shape [B1,...,Bb, M, N] . |
u | Shape [B1,...,Bb, M, K] Tensor of same dtype as base_operator . This is U above. |
diag_update | Optional shape [B1,...,Bb, K] Tensor with same dtype as base_operator . This is the diagonal of D above. Defaults to D being the identity operator. |
v | Optional Tensor of same dtype as u and shape [B1,...,Bb, N, K] Defaults to v = u , in which case the perturbation is symmetric. If M != N , then v must be set since the perturbation is not square. |
is_diag_update_positive | Python bool . If True , expect diag_update > 0 . |
is_non_singular | Expect that this operator is non-singular. Default is None , unless is_positive_definite is auto-set to be True (see below). |
is_self_adjoint | Expect that this operator is equal to its hermitian transpose. Default is None , unless base_operator is self-adjoint and v = None (meaning u=v ), in which case this defaults to True . |
is_positive_definite | Expect that this operator is positive definite. Default is None , unless base_operator is positive-definite v = None (meaning u=v ), and is_diag_update_positive , in which case this defaults to True . Note that we say an operator is positive definite when the quadratic form x^H A x has positive real part for all nonzero x . |
is_square | Expect that this operator acts like square [batch] matrices. |
name | A name for this LinearOperator . |
Raises | |
---|---|
ValueError | If is_X flags are set in an inconsistent way. |
Attributes | |
---|---|
H | Returns the adjoint of the current LinearOperator . Given |
base_operator | If this operator is A = L + U D V^H , this is the L . |
batch_shape | TensorShape of batch dimensions of this LinearOperator . If this operator acts like the batch matrix |
diag_operator | If this operator is A = L + U D V^H , this is D . |
diag_update | If this operator is A = L + U D V^H , this is the diagonal of D . |
domain_dimension | Dimension (in the sense of vector spaces) of the domain of this operator. If this operator acts like the batch matrix |
dtype | The DType of Tensor s handled by this LinearOperator . |
graph_parents | List of graph dependencies of this LinearOperator . |
is_diag_update_positive | If this operator is A = L + U D V^H , this hints D > 0 elementwise. |
is_non_singular | |
is_positive_definite | |
is_self_adjoint | |
is_square | Return True/False depending on if this operator is square. |
range_dimension | Dimension (in the sense of vector spaces) of the range of this operator. If this operator acts like the batch matrix |
shape | TensorShape of this LinearOperator . If this operator acts like the batch matrix |
tensor_rank | Rank (in the sense of tensors) of matrix corresponding to this operator. If this operator acts like the batch matrix |
u | If this operator is A = L + U D V^H , this is the U . |
v | If this operator is A = L + U D V^H , this is the V . |
Methods
add_to_tensor
add_to_tensor( x, name='add_to_tensor' )
Add matrix represented by this operator to x
. Equivalent to A + x
.
Args | |
---|---|
x | Tensor with same dtype and shape broadcastable to self.shape . |
name | A name to give this Op . |
Returns | |
---|---|
A Tensor with broadcast shape and same dtype as self . |
adjoint
adjoint( name='adjoint' )
Returns the adjoint of the current LinearOperator
.
Given A
representing this LinearOperator
, return A*
. Note that calling self.adjoint()
and self.H
are equivalent.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
LinearOperator which represents the adjoint of this LinearOperator . |
assert_non_singular
assert_non_singular( name='assert_non_singular' )
Returns an Op
that asserts this operator is non singular.
This operator is considered non-singular if
ConditionNumber < max{100, range_dimension, domain_dimension} * eps, eps := np.finfo(self.dtype.as_numpy_dtype).eps
Args | |
---|---|
name | A string name to prepend to created ops. |
Returns | |
---|---|
An Assert Op , that, when run, will raise an InvalidArgumentError if the operator is singular. |
assert_positive_definite
assert_positive_definite( name='assert_positive_definite' )
Returns an Op
that asserts this operator is positive definite.
Here, positive definite means that the quadratic form x^H A x
has positive real part for all nonzero x
. Note that we do not require the operator to be self-adjoint to be positive definite.
Args | |
---|---|
name | A name to give this Op . |
Returns | |
---|---|
An Assert Op , that, when run, will raise an InvalidArgumentError if the operator is not positive definite. |
assert_self_adjoint
assert_self_adjoint( name='assert_self_adjoint' )
Returns an Op
that asserts this operator is self-adjoint.
Here we check that this operator is exactly equal to its hermitian transpose.
Args | |
---|---|
name | A string name to prepend to created ops. |
Returns | |
---|---|
An Assert Op , that, when run, will raise an InvalidArgumentError if the operator is not self-adjoint. |
batch_shape_tensor
batch_shape_tensor( name='batch_shape_tensor' )
Shape of batch dimensions of this operator, determined at runtime.
If this operator acts like the batch matrix A
with A.shape = [B1,...,Bb, M, N]
, then this returns a Tensor
holding [B1,...,Bb]
.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
int32 Tensor |
cholesky
cholesky( name='cholesky' )
Returns a Cholesky factor as a LinearOperator
.
Given A
representing this LinearOperator
, if A
is positive definite self-adjoint, return L
, where A = L L^T
, i.e. the cholesky decomposition.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
LinearOperator which represents the lower triangular matrix in the Cholesky decomposition. |
Raises | |
---|---|
ValueError | When the LinearOperator is not hinted to be positive definite and self adjoint. |
determinant
determinant( name='det' )
Determinant for every batch member.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
Tensor with shape self.batch_shape and same dtype as self . |
Raises | |
---|---|
NotImplementedError | If self.is_square is False . |
diag_part
diag_part( name='diag_part' )
Efficiently get the [batch] diagonal part of this operator.
If this operator has shape [B1,...,Bb, M, N]
, this returns a Tensor
diagonal
, of shape [B1,...,Bb, min(M, N)]
, where diagonal[b1,...,bb, i] = self.to_dense()[b1,...,bb, i, i]
.
my_operator = LinearOperatorDiag([1., 2.]) # Efficiently get the diagonal my_operator.diag_part() ==> [1., 2.] # Equivalent, but inefficient method tf.linalg.diag_part(my_operator.to_dense()) ==> [1., 2.]
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
diag_part | A Tensor of same dtype as self. |
domain_dimension_tensor
domain_dimension_tensor( name='domain_dimension_tensor' )
Dimension (in the sense of vector spaces) of the domain of this operator.
Determined at runtime.
If this operator acts like the batch matrix A
with A.shape = [B1,...,Bb, M, N]
, then this returns N
.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
int32 Tensor |
inverse
inverse( name='inverse' )
Returns the Inverse of this LinearOperator
.
Given A
representing this LinearOperator
, return a LinearOperator
representing A^-1
.
Args | |
---|---|
name | A name scope to use for ops added by this method. |
Returns | |
---|---|
LinearOperator representing inverse of this matrix. |
Raises | |
---|---|
ValueError | When the LinearOperator is not hinted to be non_singular . |
log_abs_determinant
log_abs_determinant( name='log_abs_det' )
Log absolute value of determinant for every batch member.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
Tensor with shape self.batch_shape and same dtype as self . |
Raises | |
---|---|
NotImplementedError | If self.is_square is False . |
matmul
matmul( x, adjoint=False, adjoint_arg=False, name='matmul' )
Transform [batch] matrix x
with left multiplication: x --> Ax
.
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N] operator = LinearOperator(...) operator.shape = [..., M, N] X = ... # shape [..., N, R], batch matrix, R > 0. Y = operator.matmul(X) Y.shape ==> [..., M, R] Y[..., :, r] = sum_j A[..., :, j] X[j, r]
Args | |
---|---|
x | LinearOperator or Tensor with compatible shape and same dtype as self . See class docstring for definition of compatibility. |
adjoint | Python bool . If True , left multiply by the adjoint: A^H x . |
adjoint_arg | Python bool . If True , compute A x^H where x^H is the hermitian transpose (transposition and complex conjugation). |
name | A name for this Op . |
Returns | |
---|---|
A LinearOperator or Tensor with shape [..., M, R] and same dtype as self . |
matvec
matvec( x, adjoint=False, name='matvec' )
Transform [batch] vector x
with left multiplication: x --> Ax
.
# Make an operator acting like batch matric A. Assume A.shape = [..., M, N] operator = LinearOperator(...) X = ... # shape [..., N], batch vector Y = operator.matvec(X) Y.shape ==> [..., M] Y[..., :] = sum_j A[..., :, j] X[..., j]
Args | |
---|---|
x | Tensor with compatible shape and same dtype as self . x is treated as a [batch] vector meaning for every set of leading dimensions, the last dimension defines a vector. See class docstring for definition of compatibility. |
adjoint | Python bool . If True , left multiply by the adjoint: A^H x . |
name | A name for this Op . |
Returns | |
---|---|
A Tensor with shape [..., M] and same dtype as self . |
range_dimension_tensor
range_dimension_tensor( name='range_dimension_tensor' )
Dimension (in the sense of vector spaces) of the range of this operator.
Determined at runtime.
If this operator acts like the batch matrix A
with A.shape = [B1,...,Bb, M, N]
, then this returns M
.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
int32 Tensor |
shape_tensor
shape_tensor( name='shape_tensor' )
Shape of this LinearOperator
, determined at runtime.
If this operator acts like the batch matrix A
with A.shape = [B1,...,Bb, M, N]
, then this returns a Tensor
holding [B1,...,Bb, M, N]
, equivalent to tf.shape(A)
.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
int32 Tensor |
solve
solve( rhs, adjoint=False, adjoint_arg=False, name='solve' )
Solve (exact or approx) R
(batch) systems of equations: A X = rhs
.
The returned Tensor
will be close to an exact solution if A
is well conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N] operator = LinearOperator(...) operator.shape = [..., M, N] # Solve R > 0 linear systems for every member of the batch. RHS = ... # shape [..., M, R] X = operator.solve(RHS) # X[..., :, r] is the solution to the r'th linear system # sum_j A[..., :, j] X[..., j, r] = RHS[..., :, r] operator.matmul(X) ==> RHS
Args | |
---|---|
rhs | Tensor with same dtype as this operator and compatible shape. rhs is treated like a [batch] matrix meaning for every set of leading dimensions, the last two dimensions defines a matrix. See class docstring for definition of compatibility. |
adjoint | Python bool . If True , solve the system involving the adjoint of this LinearOperator : A^H X = rhs . |
adjoint_arg | Python bool . If True , solve A X = rhs^H where rhs^H is the hermitian transpose (transposition and complex conjugation). |
name | A name scope to use for ops added by this method. |
Returns | |
---|---|
Tensor with shape [...,N, R] and same dtype as rhs . |
Raises | |
---|---|
NotImplementedError | If self.is_non_singular or is_square is False. |
solvevec
solvevec( rhs, adjoint=False, name='solve' )
Solve single equation with best effort: A X = rhs
.
The returned Tensor
will be close to an exact solution if A
is well conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N] operator = LinearOperator(...) operator.shape = [..., M, N] # Solve one linear system for every member of the batch. RHS = ... # shape [..., M] X = operator.solvevec(RHS) # X is the solution to the linear system # sum_j A[..., :, j] X[..., j] = RHS[..., :] operator.matvec(X) ==> RHS
Args | |
---|---|
rhs | Tensor with same dtype as this operator. rhs is treated like a [batch] vector meaning for every set of leading dimensions, the last dimension defines a vector. See class docstring for definition of compatibility regarding batch dimensions. |
adjoint | Python bool . If True , solve the system involving the adjoint of this LinearOperator : A^H X = rhs . |
name | A name scope to use for ops added by this method. |
Returns | |
---|---|
Tensor with shape [...,N] and same dtype as rhs . |
Raises | |
---|---|
NotImplementedError | If self.is_non_singular or is_square is False. |
tensor_rank_tensor
tensor_rank_tensor( name='tensor_rank_tensor' )
Rank (in the sense of tensors) of matrix corresponding to this operator.
If this operator acts like the batch matrix A
with A.shape = [B1,...,Bb, M, N]
, then this returns b + 2
.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
int32 Tensor , determined at runtime. |
to_dense
to_dense( name='to_dense' )
Return a dense (batch) matrix representing this operator.
trace
trace( name='trace' )
Trace of the linear operator, equal to sum of self.diag_part()
.
If the operator is square, this is also the sum of the eigenvalues.
Args | |
---|---|
name | A name for this Op . |
Returns | |
---|---|
Shape [B1,...,Bb] Tensor of same dtype as self . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/linalg/LinearOperatorLowRankUpdate