tf.contrib.layers.variance_scaling_initializer
Returns an initializer that generates tensors without scaling variance.
tf.contrib.layers.variance_scaling_initializer( factor=2.0, mode='FAN_IN', uniform=False, seed=None, dtype=tf.dtypes.float32 )
When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does not explode or diminish by reaching the final layer. This initializer use the following formula:
if mode='FAN_IN': # Count only number of input connections. n = fan_in elif mode='FAN_OUT': # Count only number of output connections. n = fan_out elif mode='FAN_AVG': # Average number of inputs and output connections. n = (fan_in + fan_out)/2.0 truncated_normal(shape, 0.0, stddev=sqrt(factor / n))
- To get Delving Deep into Rectifiers (also know as the "MSRA initialization"), use (Default):
factor=2.0 mode='FAN_IN' uniform=False
- To get Convolutional Architecture for Fast Feature Embedding, use:
factor=1.0 mode='FAN_IN' uniform=True
- To get Understanding the difficulty of training deep feedforward neural networks, use:
factor=1.0 mode='FAN_AVG' uniform=True.
- To get
xavier_initializer
use either:
factor=1.0 mode='FAN_AVG' uniform=True
, or
factor=1.0 mode='FAN_AVG' uniform=False
.
Args | |
---|---|
factor | Float. A multiplicative factor. |
mode | String. 'FAN_IN', 'FAN_OUT', 'FAN_AVG'. |
uniform | Whether to use uniform or normal distributed random initialization. |
seed | A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seed for behavior. |
dtype | The data type. Only floating point types are supported. |
Returns | |
---|---|
An initializer that generates tensors with unit variance. |
Raises | |
---|---|
ValueError | if dtype is not a floating point type. |
TypeError | if mode is not in ['FAN_IN', 'FAN_OUT', 'FAN_AVG']. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/layers/variance_scaling_initializer