tf.contrib.layers.embed_sequence
Maps a sequence of symbols to a sequence of embeddings.
tf.contrib.layers.embed_sequence(
ids, vocab_size=None, embed_dim=None, unique=False, initializer=None,
regularizer=None, trainable=True, scope=None, reuse=None
)
Typical use case would be reusing embeddings between an encoder and decoder.
| Args | |
|---|---|
ids | [batch_size, doc_length] Tensor of type int32 or int64 with symbol ids. |
vocab_size | Integer number of symbols in vocabulary. |
embed_dim | Integer number of dimensions for embedding matrix. |
unique | If True, will first compute the unique set of indices, and then lookup each embedding once, repeating them in the output as needed. |
initializer | An initializer for the embeddings, if None default for current scope is used. |
regularizer | Optional regularizer for the embeddings. |
trainable | If True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable). |
scope | Optional string specifying the variable scope for the op, required if reuse=True. |
reuse | If True, variables inside the op will be reused. |
| Returns | |
|---|---|
Tensor of [batch_size, doc_length, embed_dim] with embedded sequences. |
| Raises | |
|---|---|
ValueError | if embed_dim or vocab_size are not specified when reuse is None or False. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/layers/embed_sequence