tf.keras.losses.KLD
View source on GitHub |
Computes Kullback-Leibler divergence loss between y_true
and y_pred
.
tf.keras.losses.KLD( y_true, y_pred )
loss = y_true * log(y_true / y_pred)
See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
Usage:
loss = tf.keras.losses.KLD([.4, .9, .2], [.5, .8, .12]) print('Loss: ', loss.numpy()) # Loss: 0.11891246
Args | |
---|---|
y_true | Tensor of true targets. |
y_pred | Tensor of predicted targets. |
Returns | |
---|---|
A Tensor with loss. |
Raises | |
---|---|
TypeError | If y_true cannot be cast to the y_pred.dtype . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/losses/KLD