tf.contrib.lookup.IdTableWithHashBuckets

String to Id table wrapper that assigns out-of-vocabulary keys to buckets.

Inherits From: LookupInterface

For example, if an instance of IdTableWithHashBuckets is initialized with a string-to-id table that maps:

  • emerson -> 0
  • lake -> 1
  • palmer -> 2

The IdTableWithHashBuckets object will performs the following mapping:

  • emerson -> 0
  • lake -> 1
  • palmer -> 2
  • <other term> -> bucket_id, where bucket_id will be between 3 and 3 + num_oov_buckets - 1, calculated by: hash(<term>) % num_oov_buckets + vocab_size

If input_tensor is ["emerson", "lake", "palmer", "king", "crimson"], the lookup result is [0, 1, 2, 4, 7].

If table is None, only out-of-vocabulary buckets are used.

Example usage:

num_oov_buckets = 3
input_tensor = tf.constant(["emerson", "lake", "palmer", "king", "crimnson"])
table = tf.IdTableWithHashBuckets(
    tf.StaticHashTable(tf.TextFileIdTableInitializer(filename),
                       default_value),
    num_oov_buckets)
out = table.lookup(input_tensor).
table.init.run()
print(out.eval())

The hash function used for generating out-of-vocabulary buckets ID is handled by hasher_spec.

Args
table Table that maps tf.string or tf.int64 keys to tf.int64 ids.
num_oov_buckets Number of buckets to use for out-of-vocabulary keys.
hasher_spec A HasherSpec to specify the hash function to use for assignation of out-of-vocabulary buckets (optional).
name A name for the operation (optional).
key_dtype Data type of keys passed to lookup. Defaults to table.key_dtype if table is specified, otherwise tf.string. Must be string or integer, and must be castable to table.key_dtype.
Raises
ValueError when table in None and num_oov_buckets is not positive.
TypeError when hasher_spec is invalid.
Attributes
init DEPRECATED FUNCTION
initializer
key_dtype The table key dtype.
name The name of the table.
resource_handle Returns the resource handle associated with this Resource.
value_dtype The table value dtype.

Methods

lookup

View source

Looks up keys in the table, outputs the corresponding values.

It assigns out-of-vocabulary keys to buckets based in their hashes.

Args
keys Keys to look up. May be either a SparseTensor or dense Tensor.
name Optional name for the op.
Returns
A SparseTensor if keys are sparse, otherwise a dense Tensor.
Raises
TypeError when keys doesn't match the table key data type.

size

View source

Compute the number of elements in this table.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/lookup/IdTableWithHashBuckets