tf.keras.losses.SparseCategoricalCrossentropy
View source on GitHub |
Computes the crossentropy loss between the labels and predictions.
tf.keras.losses.SparseCategoricalCrossentropy( from_logits=False, reduction=losses_utils.ReductionV2.AUTO, name='sparse_categorical_crossentropy' )
Use this crossentropy loss function when there are two or more label classes. We expect labels to be provided as integers. If you want to provide labels using one-hot
representation, please use CategoricalCrossentropy
loss. There should be # classes
floating point values per feature for y_pred
and a single floating point value per feature for y_true
.
In the snippet below, there is a single floating point value per example for y_true
and # classes
floating pointing values per example for y_pred
. The shape of y_true
is [batch_size]
and the shape of y_pred
is [batch_size, num_classes]
.
Usage:
cce = tf.keras.losses.SparseCategoricalCrossentropy() loss = cce( tf.convert_to_tensor([0, 1, 2]), tf.convert_to_tensor([[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]])) print('Loss: ', loss.numpy()) # Loss: 0.3239
Usage with the compile
API:
model = tf.keras.Model(inputs, outputs) model.compile('sgd', loss=tf.keras.losses.SparseCategoricalCrossentropy())
Args | |
---|---|
from_logits | Whether y_pred is expected to be a logits tensor. By default, we assume that y_pred encodes a probability distribution. Note: Using from_logits=True may be more numerically stable. |
reduction | (Optional) Type of tf.keras.losses.Reduction to apply to loss. Default value is AUTO . AUTO indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to SUM_OVER_BATCH_SIZE . When used with tf.distribute.Strategy , outside of built-in training loops such as tf.keras compile and fit , using AUTO or SUM_OVER_BATCH_SIZE will raise an error. Please see https://www.tensorflow.org/alpha/tutorials/distribute/training_loops for more details on this. |
name | Optional name for the op. |
Methods
from_config
@classmethod from_config( config )
Instantiates a Loss
from its config (output of get_config()
).
Args | |
---|---|
config | Output of get_config() . |
Returns | |
---|---|
A Loss instance. |
get_config
get_config()
__call__
__call__( y_true, y_pred, sample_weight=None )
Invokes the Loss
instance.
Args | |
---|---|
y_true | Ground truth values. shape = [batch_size, d0, .. dN] |
y_pred | The predicted values. shape = [batch_size, d0, .. dN] |
sample_weight | Optional sample_weight acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If sample_weight is a tensor of size [batch_size] , then the total loss for each sample of the batch is rescaled by the corresponding element in the sample_weight vector. If the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be broadcasted to this shape), then each loss element of y_pred is scaled by the corresponding value of sample_weight . (Note ondN-1 : all loss functions reduce by 1 dimension, usually axis=-1.) |
Returns | |
---|---|
Weighted loss float Tensor . If reduction is NONE , this has shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note dN-1 because all loss functions reduce by 1 dimension, usually axis=-1.) |
Raises | |
---|---|
ValueError | If the shape of sample_weight is invalid. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy