tf.keras.experimental.CosineDecayRestarts
View source on GitHub |
A LearningRateSchedule that uses a cosine decay schedule with restarts.
Inherits From: LearningRateSchedule
tf.keras.experimental.CosineDecayRestarts( initial_learning_rate, first_decay_steps, t_mul=2.0, m_mul=1.0, alpha=0.0, name=None )
Args | |
---|---|
initial_learning_rate | A scalar float32 or float64 Tensor or a Python number. The initial learning rate. |
first_decay_steps | A scalar int32 or int64 Tensor or a Python number. Number of steps to decay over. |
t_mul | A scalar float32 or float64 Tensor or a Python number. Used to derive the number of iterations in the i-th period |
m_mul | A scalar float32 or float64 Tensor or a Python number. Used to derive the initial learning rate of the i-th period: |
alpha | A scalar float32 or float64 Tensor or a Python number. Minimum learning rate value as a fraction of the initial_learning_rate. |
name | String. Optional name of the operation. Defaults to 'SGDRDecay'. |
Methods
from_config
@classmethod from_config( config )
Instantiates a LearningRateSchedule
from its config.
Args | |
---|---|
config | Output of get_config() . |
Returns | |
---|---|
A LearningRateSchedule instance. |
get_config
get_config()
__call__
__call__( step )
Call self as a function.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/experimental/CosineDecayRestarts