tf.contrib.framework.BoundedTensorSpec
A TensorSpec
that specifies minimum and maximum values.
Inherits From: TensorSpec
tf.contrib.framework.BoundedTensorSpec( shape, dtype, minimum, maximum, name=None )
Example usage:
spec = tensor_spec.BoundedTensorSpec((1, 2, 3), tf.float32, 0, (5, 5, 5)) tf_minimum = tf.convert_to_tensor(spec.minimum, dtype=spec.dtype) tf_maximum = tf.convert_to_tensor(spec.maximum, dtype=spec.dtype)
Bounds are meant to be inclusive. This is especially important for integer types. The following spec will be satisfied by tensors with values in the set {0, 1, 2}:
spec = tensor_spec.BoundedTensorSpec((3, 5), tf.int32, 0, 2)
Args | |
---|---|
shape | Value convertible to tf.TensorShape . The shape of the tensor. |
dtype | Value convertible to tf.DType . The type of the tensor values. |
minimum | Number or sequence specifying the minimum element bounds (inclusive). Must be broadcastable to shape . |
maximum | Number or sequence specifying the maximum element bounds (inclusive). Must be broadcastable to shape . |
name | Optional string containing a semantic name for the corresponding array. Defaults to None . |
Raises | |
---|---|
ValueError | If minimum or maximum are not provided or not broadcastable to shape . |
TypeError | If the shape is not an iterable or if the dtype is an invalid numpy dtype. |
Attributes | |
---|---|
dtype | Returns the dtype of elements in the tensor. |
maximum | Returns a NumPy array specifying the maximum bounds (inclusive). |
minimum | Returns a NumPy array specifying the minimum bounds (inclusive). |
name | Returns the (optionally provided) name of the described tensor. |
shape | Returns the TensorShape that represents the shape of the tensor. |
value_type |
Methods
from_spec
@classmethod from_spec( spec )
from_tensor
@classmethod from_tensor( tensor, name=None )
is_compatible_with
is_compatible_with( spec_or_tensor )
Returns True if spec_or_tensor is compatible with this TensorSpec.
Two tensors are considered compatible if they have the same dtype and their shapes are compatible (see tf.TensorShape.is_compatible_with
).
Args | |
---|---|
spec_or_tensor | A tf.TensorSpec or a tf.Tensor |
Returns | |
---|---|
True if spec_or_tensor is compatible with self. |
most_specific_compatible_type
most_specific_compatible_type( other )
Returns the most specific TypeSpec compatible with self
and other
.
Args | |
---|---|
other | A TypeSpec . |
Raises | |
---|---|
ValueError | If there is no TypeSpec that is compatible with both self and other . |
__eq__
__eq__( other )
Return self==value.
__ne__
__ne__( other )
Return self!=value.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/framework/BoundedTensorSpec