tf.contrib.framework.BoundedTensorSpec
A TensorSpec that specifies minimum and maximum values.
Inherits From: TensorSpec
tf.contrib.framework.BoundedTensorSpec(
shape, dtype, minimum, maximum, name=None
)
Example usage:
spec = tensor_spec.BoundedTensorSpec((1, 2, 3), tf.float32, 0, (5, 5, 5)) tf_minimum = tf.convert_to_tensor(spec.minimum, dtype=spec.dtype) tf_maximum = tf.convert_to_tensor(spec.maximum, dtype=spec.dtype)
Bounds are meant to be inclusive. This is especially important for integer types. The following spec will be satisfied by tensors with values in the set {0, 1, 2}:
spec = tensor_spec.BoundedTensorSpec((3, 5), tf.int32, 0, 2)
| Args | |
|---|---|
shape | Value convertible to tf.TensorShape. The shape of the tensor. |
dtype | Value convertible to tf.DType. The type of the tensor values. |
minimum | Number or sequence specifying the minimum element bounds (inclusive). Must be broadcastable to shape. |
maximum | Number or sequence specifying the maximum element bounds (inclusive). Must be broadcastable to shape. |
name | Optional string containing a semantic name for the corresponding array. Defaults to None. |
| Raises | |
|---|---|
ValueError | If minimum or maximum are not provided or not broadcastable to shape. |
TypeError | If the shape is not an iterable or if the dtype is an invalid numpy dtype. |
| Attributes | |
|---|---|
dtype | Returns the dtype of elements in the tensor. |
maximum | Returns a NumPy array specifying the maximum bounds (inclusive). |
minimum | Returns a NumPy array specifying the minimum bounds (inclusive). |
name | Returns the (optionally provided) name of the described tensor. |
shape | Returns the TensorShape that represents the shape of the tensor. |
value_type | |
Methods
from_spec
@classmethod
from_spec(
spec
)
from_tensor
@classmethod
from_tensor(
tensor, name=None
)
is_compatible_with
is_compatible_with(
spec_or_tensor
)
Returns True if spec_or_tensor is compatible with this TensorSpec.
Two tensors are considered compatible if they have the same dtype and their shapes are compatible (see tf.TensorShape.is_compatible_with).
| Args | |
|---|---|
spec_or_tensor | A tf.TensorSpec or a tf.Tensor |
| Returns | |
|---|---|
| True if spec_or_tensor is compatible with self. |
most_specific_compatible_type
most_specific_compatible_type(
other
)
Returns the most specific TypeSpec compatible with self and other.
| Args | |
|---|---|
other | A TypeSpec. |
| Raises | |
|---|---|
ValueError | If there is no TypeSpec that is compatible with both self and other. |
__eq__
__eq__(
other
)
Return self==value.
__ne__
__ne__(
other
)
Return self!=value.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/framework/BoundedTensorSpec