tf.contrib.learn.multi_label_head

Creates a Head for multi label classification. (deprecated)

Multi-label classification handles the case where each example may have zero or more associated labels, from a discrete set. This is distinct from multi_class_head which has exactly one label from a discrete set.

This head by default uses sigmoid cross entropy loss, which expects as input a multi-hot tensor of shape (batch_size, num_classes).

Args
n_classes Integer, number of classes, must be >= 2
label_name String, name of the key in label dict. Can be null if label is a tensor (single headed models).
weight_column_name A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example.
enable_centered_bias A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias.
head_name name of the head. If provided, predictions, summary and metrics keys will be suffixed by "/" + head_name and the default variable scope will be head_name.
thresholds thresholds for eval metrics, defaults to [.5]
metric_class_ids List of class IDs for which we should report per-class metrics. Must all be in the range [0, n_classes).
loss_fn Optional function that takes (labels, logits, weights) as parameter and returns a weighted scalar loss. weights should be optional. See tf.losses
Returns
An instance of Head for multi label classification.
Raises
ValueError If n_classes is < 2
ValueError If loss_fn does not have expected signature.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/learn/multi_label_head