tf.keras.layers.LocallyConnected1D
View source on GitHub |
Locally-connected layer for 1D inputs.
Inherits From: Layer
tf.keras.layers.LocallyConnected1D( filters, kernel_size, strides=1, padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, implementation=1, **kwargs )
The LocallyConnected1D
layer works similarly to the Conv1D
layer, except that weights are unshared, that is, a different set of filters is applied at each different patch of the input.
Example:
# apply a unshared weight convolution 1d of length 3 to a sequence with # 10 timesteps, with 64 output filters model = Sequential() model.add(LocallyConnected1D(64, 3, input_shape=(10, 32))) # now model.output_shape == (None, 8, 64) # add a new conv1d on top model.add(LocallyConnected1D(32, 3)) # now model.output_shape == (None, 6, 32)
Arguments | |
---|---|
filters | Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). |
kernel_size | An integer or tuple/list of a single integer, specifying the length of the 1D convolution window. |
strides | An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1. |
padding | Currently only supports "valid" (case-insensitive). "same" may be supported in the future. |
data_format | A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length, channels) while channels_first corresponds to inputs with shape (batch, channels, length) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be "channels_last". |
activation | Activation function to use. If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x ). |
use_bias | Boolean, whether the layer uses a bias vector. |
kernel_initializer | Initializer for the kernel weights matrix. |
bias_initializer | Initializer for the bias vector. |
kernel_regularizer | Regularizer function applied to the kernel weights matrix. |
bias_regularizer | Regularizer function applied to the bias vector. |
activity_regularizer | Regularizer function applied to the output of the layer (its "activation").. |
kernel_constraint | Constraint function applied to the kernel matrix. |
bias_constraint | Constraint function applied to the bias vector. |
implementation | implementation mode, either 1 , 2 , or 3 . 1 loops over input spatial locations to perform the forward pass. It is memory-efficient but performs a lot of (small) ops.
How to choose:
where "large" stands for large input/output activations (i.e. many It is recommended to benchmark each in the setting of interest to pick the most efficient one (in terms of speed and memory usage). Correct choice of implementation can lead to dramatic speed improvements (e.g. 50X), potentially at the expense of RAM. Also, only |
Input shape:
3D tensor with shape: (batch_size, steps, input_dim)
Output shape:
3D tensor with shape: (batch_size, new_steps, filters)
steps
value might have changed due to padding or strides.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/layers/LocallyConnected1D