tf.contrib.layers.sequence_input_from_feature_columns

Builds inputs for sequence models from FeatureColumns. (experimental)

See documentation for input_from_feature_columns. The following types of FeatureColumn are permitted in feature_columns: _OneHotColumn, _EmbeddingColumn, _ScatteredEmbeddingColumn, _RealValuedColumn, _DataFrameColumn. In addition, columns in feature_columns may not be constructed using any of the following: ScatteredEmbeddingColumn, BucketizedColumn, CrossedColumn.

Args
columns_to_tensors A mapping from feature column to tensors. 'string' key means a base feature (not-transformed). It can have FeatureColumn as a key too. That means that FeatureColumn is already transformed by input pipeline.
feature_columns A set containing all the feature columns. All items in the set should be instances of classes derived by FeatureColumn.
weight_collections List of graph collections to which weights are added.
trainable If True also add variables to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
scope Optional scope for variable_scope.
Returns
A Tensor which can be consumed by hidden layers in the neural network.
Raises
ValueError if FeatureColumn cannot be consumed by a neural network.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/layers/sequence_input_from_feature_columns