tf.keras.losses.LogCosh

View source on GitHub

Computes the logarithm of the hyperbolic cosine of the prediction error.

logcosh = log((exp(x) + exp(-x))/2), where x is the error y_pred - y_true.

Usage:

l = tf.keras.losses.LogCosh()
loss = l([0., 1., 1.], [1., 0., 1.])
print('Loss: ', loss.numpy())  # Loss: 0.289

Usage with the compile API:

model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.LogCosh())

Methods

from_config

View source

Instantiates a Loss from its config (output of get_config()).

Args
config Output of get_config().
Returns
A Loss instance.

get_config

View source

__call__

View source

Invokes the Loss instance.

Args
y_true Ground truth values. shape = [batch_size, d0, .. dN]
y_pred The predicted values. shape = [batch_size, d0, .. dN]
sample_weight Optional sample_weight acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If sample_weight is a tensor of size [batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in the sample_weight vector. If the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be broadcasted to this shape), then each loss element of y_pred is scaled by the corresponding value of sample_weight. (Note ondN-1: all loss functions reduce by 1 dimension, usually axis=-1.)
Returns
Weighted loss float Tensor. If reduction is NONE, this has shape [batch_size, d0, .. dN-1]; otherwise, it is scalar. (Note dN-1 because all loss functions reduce by 1 dimension, usually axis=-1.)
Raises
ValueError If the shape of sample_weight is invalid.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/losses/LogCosh